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1. Introduction

Serre conjectured in [56] that if ` is prime and

ρ : GQ → GL2(F`)

is a continuous, odd, irreducible representation, then ρ is modular in the sense that
it arises as the reduction of an `-adic representation associated to a Hecke eigenform
in the space Sk(Γ1(N)) of cusp forms of some weight k and level N . Let us refer
to this (incredibly strong) conjecture as “the weak conjecture”. Serre goes on to
formulate a refined conjecture which predicts the minimal weight and level of such
an eigenform subject to the constraints k ≥ 2 and ` - N ; let us call this “Serre’s
refined conjecture”. Note that Serre explicitly excludes weight 1 modular forms,
although a further reformulation was made by Edixhoven in [20] to include them,
and we refer to Edixhoven’s reformulation as “Edixhoven’s refined conjecture”.
Through the work of Ribet [51], Gross [34], Coleman-Voloch [11] and others, the
equivalence between the weak conjecture and Serre’s refinement was known for
` > 2 (see [16]), and also when ` = 2 in many cases (see [8]). The equivalence
of Serre’s refined conjecture and Edixhoven’s refined conjecture is also essentially
known, although the question does not appear to have been completely resolved:
for ` = 2, there still appears to be an issue regarding constructing a weight 1 form
in every case that Edixhoven predicts that such a form exists.

The aim of this paper is to formulate a generalisation of Serre’s refined conjecture
to the context of two-dimensional representations of GK where K is a totally real
field. The details of such a formulation (assuming ` unramified in K) were worked
out by one of us (F.D.) stemming from correspondence and conversations among the
authors in 2002, and the first version of this paper appeared in 2004. At that time
the weak conjecture (for GQ) appeared out of reach. Since then there has been star-
tling progress, culminating in its recent proof by Khare and Wintenberger [44, 45],
building on ideas developed by Dieulefait and themselves [19, 65, 43, 42] and rely-
ing crucially on potential modularity and modularity lifting methods and results of
Taylor, Wiles and Kisin [64, 61, 60, 46, 47]. Their result also resolves the remaining
case for ` = 2 of Serre’s refined conjecture.

Since the first version of this paper appeared, there has also been significant
progress towards proving the equivalence between the “weak” and “refined” con-
jectures we presented over GK . Partial results already followed from work of one
of the authors [37, 39], Fujiwara [28] and Rajaei [50], and further results were sub-
sequently obtained by Schein [54] and Gee [29]. For the most part the techniques
were generalisations of ones already used in the case K = Q and seemed severely
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limited with respect to establishing the “weight part” of the refined conjecture.
However in [31, 32] Gee presented a new, much more promising approach; it re-
mains to be seen how far the ideas there can be pushed towards a complete proof
of the equivalence between weak and refined conjectures.

Another important development related to Serre’s conjecture has been the recent
progress on constructing `-adic and mod ` Langlands correspondences, especially
the work of Breuil, Colmez and Emerton. In particular, a correspondence between
two-dimensional `-adic representations of GQ`

and certain `-adic representations of
GL2(Q`) was constructed by Colmez [12], and a conjectural compatibility with a
global correspondence was formulated and proved in many cases by Emerton in [22]
(see also [21]). There is also a mod ` version of this compatibility, which we refer
to as “Emerton’s refined conjecture” (see also [23]). Most cases of Serre’s refined
conjecture follow from Emerton’s; in particular the specification of the weight is
essentially a description of the GL2(Z`)-socle of the representation of GL2(Q`)
arising as a local factor at ` associated to ρ. The current version of this paper
includes a partial generalisation of Emerton’s refined conjecture to certain forms of
GL2 over K. The sense in which it is “partial” is that at primes over ` we only
describe the Jordan-Hölder constituents of the socle of a maximal compact for the
local factor, and even that only for primes unramified over `. The relevance of this
socle and the difficulty of generalising the mod ` local correspondence to extensions
of Q` is clearly illustrated by the recent work of Breuil and Paskunas [7].

We now explain our set-up and aims in a little more detail. Suppose that K
is a totally real field. Let O denote its ring of integers and let SK be the set of
embeddings of K in R. Suppose that ~k ∈ ZSK with kτ ≥ 1 for all τ ∈ SK and
furthermore assume that all of the kτ are of the same parity. Let n be a non-zero
ideal of O. The space of Hilbert modular cusp forms of weight ~k and level n, denoted
S~k(U1(n)), is a finite-dimensional complex vector space equipped with an action of
commuting Hecke operators Tm, indexed by the non-zero ideals m of O (to fix ideas,
let us normalise our spaces and Hecke operators as in [59]). Fix once and for all
embeddings Q → C and Q → Q`, and let 0 6= f ∈ S~k(U1(n)) be an eigenform
for all the Tm. A construction of Rogawski-Tunnell, Ohta and Carayol [53, 49, 10],
completed by Taylor and Jarvis [59, 36], associates to f an `-adic representation

ρf : GK → GL2(Q`)

such that if p is a prime of O not dividing `n, then ρf is unramified at p and, if Frobp

denotes a geometric Frobenius, then trρf (Frobp) is the eigenvalue of Tp on f (note
that Taylor does not need to specify whether his Frobenius elements are arithmetic
or geometric, so we shall assume that they are geometric). Fixing an identification
of the residue field of Q` with F`, we obtain a representation

ρf : GK → GL2(F`)

defined as the semisimplification of the reduction of ρf . It is natural to expect the
following “folklore” generalisation of Serre’s weak conjecture to hold:

Conjecture 1.1. Suppose that ρ : GK → GL2(F`) is continuous, irreducible and
totally odd. Then ρ is isomorphic to ρf for some Hilbert modular eigenform f .

Note that one could instead have defined ρf to be the representation with the
property that the trace of an arithmetic Frobenius was equal to the corresponding
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Hecke eigenvalue, which is the same as replacing ρf by its dual, but the “geo-
metric” conjecture above is trivially equivalent to the “arithmetic” version (ρ is
geometrically modular if and only if its dual is arithmetically modular). Although
the Khare-Wintenberger approach to Serre’s original conjecture may shed light on
Conjecture 1.1 for a few explicit totally real fields K, it seems not (in its present
form) to be able to attack the case of a general K because it relies on an induction
and the fact that for certain small primes ` there are no 2-dimensional irreducible
odd mod ` representations of GQ unramified outside `; however for a totally real
field the analogous fact is not in general true.

The main aim of this paper is to refine Conjecture 1.1 along the lines of Serre’s
refinement for the case K = Q, in the special case where the prime ` is unramified
in K. Perhaps surprisingly, this is not as simple as it sounds. The main difficulty
is in specifying the weight where, even in this unramified situation, we encounter
several subtleties not present in Serre’s original work. Note first of all that there
is no obvious notion of a minimal weight. Moreover the possible weights and level
structures at primes over ` are intertwined, and, contrary to the case K = Q, one
does not always expect a representation as in Conjecture 1.1 to arise from a classical
Hilbert modular form of level prime to `. Indeed, the mod ` representation attached
to such a form has determinant equal to the product of a finite order character
unramified at ` and some power of the mod ` cyclotomic character, and it is not
hard to construct a mod ` Galois representation whose determinant is not of this
form. To deal with these issues, we introduce the notion of a Serre weight, namely
an irreducible F`-representation σ of GL2(O/`), and define what it means for ρ to
be modular of weight σ. Such a notion of weight is implicit in work of Ash and
Stevens [3, 4], its relation to Serre’s conjecture underlies Khare’s paper [41], and
its role in generalizing the conjecture to GLn over Q is evident in [1, 2]. Our aim
is to describe all possible Serre weights of forms giving rise to a representation ρ.

When working with classical modular forms, certain choices for normalisations
and conventions have now become standard. In the Hilbert case there are various
possibilities for these choices, and experience has shown the authors that things
become ultimately less confusing if one works with holomorphic automorphic rep-
resentations as in [10] rather than Hilbert modular forms, the advantage of this
approach being that now the only choice one has to make is the normalisation of
the local Langlands correspondence. We follow Carayol in our approach and use
Hecke’s normalisation rather than Langlands’. We explain our conventions more
carefully later on.

Our weight conjecture (Conjecture 3.12 below) then takes the form of a recipe for
the set of weights σ for which ρ is modular. Our notion of modularity is formulated
in terms of ρ arising in the Jacobian (or equivalently cohomology) of Shimura curves
associated to quaternion algebras over K; the weight recipe is given in terms of the
local behaviour of ρ at primes over `. We show (Theorem 3.15) that Conjecture 3.12
can be deduced from known results on Serre’s Conjecture in the case K = Q. It
is supported for other fields by numerical evidence collected by one of the authors,
Dembélé and Roberts [15], and by the theoretical evidence provided by the results
of Gee, Jarvis and Schein discussed above.

Loosely speaking, Conjecture 1.1 can be thought of in the context of a “mod `
Langlands philosophy”, with Conjecture 3.12 predicting a local-global compatibility
at primes over `. An interesting feature of the recipe for the weights is that if ` is
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inert in K and ρ|GK`
is semisimple, then the set of weights that we associate to ρ

are the Jordan–Hölder factors of the reduction of an irreducible Q`-representation
of GL2(O/`). This is proved in [17], where it is further shown that this association
establishes a correspondence between 2-dimensional Galois representations of a local
field in its residue characteristic and representations of GL2 of its residue field in
characteristic zero. Herzig [35] has shown that this phenomenon does not persist
in the context of GLn for n > 2, but rather is a property particular to n ≤ 2 of
a more general relation between the set of Serre weights and the reduction of a
characteristic zero representation associated to ρ.

In [22, 23], Emerton made precise the sense in which Serre’s refined conjecture
could be viewed as part of a mod ` Langlands philosophy (in the case k = Q).
Using automorphic forms, he associates to ρ an F`-representation π(ρ) of GL2(AQ),
which is non-zero by the theorem of Khare and Wintenberger. Emerton conjectures,
and shows under some technical hypotheses, that it factors as a restricted tensor
product of local factors πp, where πp is a smooth admissible representation of
GL2(Qp) determined by ρ|GQp

. Serre’s refined conjecture can then be recovered
from properties of the πp; moreover, results such as those in [18] and [41] describing
the possible weights and levels of forms giving rise to ρ can also be extracted. We
go on to formulate a conjecture in the spirit of Emerton’s in the context of certain
quaternion algebras over K. In order to do so, we need to associate a local factor
to ρ|GKp

when p is a prime not dividing `. This was already done by Emerton if
the quaternion algebra is split at `; we augment this with a treatment of the case
where it is ramified using results of Vignéras [62].

This paper is structured as follows. In §2 we introduce the notion of a Serre
weight and our notation and conventions regarding automorphic representations
for GL2 over K; we explain what it means for ρ to be modular of a given Serre
weight, and relate this notion to the existence of automorphic representations π
such that ρ ∼ ρπ. In §3 we formulate Conjecture 3.12 giving a recipe for the
set of Serre weights for which ρ is modular. Finally, in §4 we state our partial
generalisation of Emerton’s refined conjecture and derive some consequences.
Acknowledgements: Much of the research was carried out while one of the au-
thors (F.D.) was at Brandeis University, with support from NSF grants #9996345,
0300434. K.B. was partially supported by an EPSRC Advanced Research Fel-
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2. Serre weights

Suppose K is a totally real field (we allow K = Q) and let O denote its ring
of integers. Let ` be a prime, which we assume from the outset is unramified
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in K (although some of this section certainly could be made to work in more
generality). Recall that we have fixed embeddings Q → C and Q → Q`, and also
an identification of F` with the residue field of Q`. Let SK denote the embeddings
K → R and let us fix once and for all a preferred embedding τ0 : K → R.

Consider the group

G = GL2(O/`O) ∼=
∏

p|`
GL2(O/p).

A Serre weight is an isomorphism class of irreducible F`-representations of G. These
can be described explicitly as follows. For each prime p of K dividing `, set kp =
O/p, fp = [kp : F`] and let Sp be the set of embeddings τ : kp → F`. Then every
irreducible F`-representation of GL2(kp) is equivalent to one of the form

V~a,~b =
⊗

τ∈Sp

(det aτ ⊗kp Symbτ−1k2
p)⊗τ F`,

where aτ , bτ ∈ Z and 1 ≤ bτ ≤ ` for each τ ∈ Sp. Moreover we can assume that
0 ≤ aτ ≤ ` − 1 for each τ ∈ Sp and that aτ < ` − 1 for some τ , in which case
the resulting (`fp −1)`fp representations V~a,~b are also inequivalent. The irreducible
representations of G are thus of the form V = ⊗{p|`}Vp, where the tensor product
is over F` and each Vp is of the form V~a,~b for (~a,~b) as above.

If n is an integer then we let F`(n) denote the 1-dimensional F`-vector space with
left G-action defined by letting g ∈ G act via N(det(g))n, where N : (O/`O)× →
(Z/`Z)× is the norm. If F is a field of characteristic ` and V is an F-representation
of G space then we define V (n) to be the F-representation V (n) := V ⊗F`

F`(n).
Note that V~a,~b(n) = V~a+n,~b.

Suppose that D is a quaternion algebra over K split at τ0 and at no other infinite
places. Fix an isomorphism D ⊗K,τ0 R = M2(R); this induces an isomorphism of
(D ⊗τ0 R)× with GL2(R), which acts on H± := C\R in the usual way. Consider
K as a subfield of R (and hence of C) via the embedding τ0. If Af

K denotes the
finite adeles of K and U is an open compact subgroup of (D ⊗K Af

K)× then there
is a Shimura curve YU over K, a smooth algebraic curve whose complex points (via
τ0 : K → C) are naturally identified with

D×\
(
(D ⊗K Af

K)× × H±
)

/U

and such that YU is a canonical model for this space, in the sense of Deligne. These
canonical models have the useful property that if U ′ is a normal compact open
subgroup of U , then the natural right action of U/U ′ on YU ′(C) is induced by an
action of U/U ′ on YU ′ (that is, the action is defined over K).

Unfortunately there is more than one convention for these canonical models, and
the choice that we make genuinely affects our normalisations. To fix ideas, we shall
follow the conventions of Carayol in [9] and in particular our “Hodge structure”
h will be that of section 0.1 of [9]. This corresponds to the choice ε = −1 in the
notation of [13]. See Section 3.3 of [13] for a discussion of the differences between
this choice and the other natural choice—the key one being (Lemma 3.12 of [13])
that the choice does affect the Galois action on the adelic component group, by a
sign. That this ambiguity exists is not surprising: for example in the elliptic curve
case the modular curve Y (`) parametrising elliptic curves equipped with generators
of their `-torsion exists (for ` > 2) as a moduli space over Q, and the Weil pairing



6 KEVIN BUZZARD, FRED DIAMOND, AND FRAZER JARVIS

gives a natural morphism Y (`) → Spec(Q(ζ`)), but the two ways of normalising
the Weil pairing give different morphisms.

If K = Q and D is split (we refer to this case as “the split case”), we let XU

denote the standard compactification of the modular curve YU ; otherwise we simply
set XU = YU . Then XU is a smooth projective algebraic curve over K. Note that
XU , considered as a scheme over K, will be connected (see section 1.3 of [9]) but
not in general geometrically connected. Note also that, with notation as above, the
natural action of U/U ′ on YU ′ extends to an action on XU ′ . Opting to include the
split case does sometimes increase the length of a proof (we have to verify that “all
errors are Eisenstein”) but is arguably morally better than presenting proofs only
in the non-split case and then merely asserting that they may be modified to deal
with the split case too.

If U is a compact open subgroup of (D ⊗K Af
K)× as above, then let Pic0(XU )

denote the identity component of the relative Picard scheme of XU → Spec(K).
This definition is chosen specifically to deal with the fact that XU may not be geo-
metrically connected. In more concrete terms, if KU denotes the ring Γ(XU ,OXU

)
of globally-defined functions on XU , then KU is a number field and a finite abelian
extension of K, the curve XU is geometrically connected when regarded as a scheme
over Spec(KU ), and Pic0(XU ) is canonically isomorphic to the restriction of scalars
(from KU to K) of the Jacobian of XU/KU . In particular, Pic0(XU ) is an abelian
variety over K.

We henceforth assume that D is split at all primes of K above `, and we fix
an isomorphism D ⊗Q Q`

∼= M2(K ⊗Q`). We can now regard GL2(O ⊗ Z`) as a
subgroup of (D ⊗K Af

K)×. If U is a compact open subgroup of (D ⊗K Af
K)× as

above, and if GL2(O ⊗ Z`) is contained in U , then we say that U has level prime
to `. In this case, the natural map U → GL2(O/`O) = G is a surjection. Let U ′

denote its kernel. Then U/U ′ = G acts naturally on the right on YU ′ and on XU ′ ,
and hence naturally on the left on Pic0(XU ′) and Pic0(XU ′)[`](K). Let us say that
U is sufficiently small if it has level prime to ` and the map YU ′ → YU is étale
of degree equal to the order of G. Note that any U of level prime to ` contains a
compact open subgroup that is sufficiently small—this follows easily from 1.4.1.1–
1.4.1.3 of [9] or Lemma 12.1 of [37]. The induced map XU ′ → XU will then be finite
of degree equal to the order of G (but it may not be étale in the split case—there
will usually be ramification at the cusps).

Definition 2.1. Suppose that ρ : GK → GL2(F`) is a continuous, irreducible
representation and V is a finite-dimensional F`-vector space with a left action of G.
We say that ρ is modular of weight V if there is a quaternion algebra D over K
split at the primes above `, at τ0 and no other infinite places of K, and a sufficiently
small open compact subgroup U of (D ⊗K Af

K)× of level prime to `, such that ρ is
an F`GK-subquotient of

(
Pic0(XU ′)[`](K)⊗ V

)G
, where U ′ = ker(U → G), G acts

diagonally on the tensor product, and GK acts trivially on V .

Note that we allow subquotients with respect to the Galois action although
using Hecke operators and the Eichler-Shimura relation on XU ′ , one can show that
if we replace “GK-subquotient” by “GK-submodule” then the resulting definition
is equivalent. On the other hand, we really want to demand that ρ is a GK-
subquotient of the G-invariants of Pic0(XU ′)[`](K) ⊗ V rather than an F`[GK ×
G]-subquotient on which G acts trivially. Our conjecture would not be correct



ON SERRE’S CONJECTURE OVER TOTALLY REAL FIELDS 7

were we to use G-subquotients; a general Galois representation would then be
modular of more weights and we would not recover important subtleties of the
refined conjecture.

We have allowed reducible G-representations W in the definition of modularity,
for convenience; we now show that gives us no extra flexibility, in the sense that
a continuous irreducible ρ is modular of weight W if and only if it is modular of
weight V for V some Jordan-Hölder factor of W . The argument used to prove this
involves a re-interpretation of the notion of being modular of weight W in terms of
non-constant sheaves in the étale topology, which we now explain.

Say V is any finite-dimensional F`-vector space equipped with a left G-action.
The right action of G on YU ′ enables us to identify G with a quotient of π1(YU , x)
for x any geometric point of YU . Now a standard construction (see for example A
I.7 of [26]) associates to V a locally constant étale sheaf FV on YU , with (amongst
other things) the property that the pullback of FV to YU ′ is just the constant sheaf
associated to the vector space V . We abuse notation slightly by also using FV to
refer to the pullback of FV to YU,K , the base change of YU to K.

Later on we will also need an `-adic variant of this construction. Let U ⊂
(D ⊗K Af

K)× be compact and open, and let YU denote the associated Shimura
curve over K. If ~k ∈ ZSK

≥2 and w ∈ Z with w ≡ kτ mod 2 for all τ , if E ⊂ Q is a
number field, Galois over Q, splitting D and containing all embeddings of K into
Q, if λ|` is a prime of E, and U is sufficiently small in the sense of sections 2.1.3
and 2.1.4 of [10], then Carayol defines an OEλ

-sheaf F0
λ,U on YU associated to (~k,w)

and an Eλ-sheaf Fλ,U = F0
λ,U ⊗Q`. The sheaf F0

λ,U (but not Fλ,U ) depends on a
choice of lattice which we always take to be the one arising from tensor products of
symmetric powers of O2

Eλ
. We remark that our specific notion of sufficiently small

is different from the one needed to define F0
λ,U in [10], but with this choice of lattice

any compact open U of level prime to ` contains one which is sufficiently small in
both senses. Furthermore, if we demand that λ is the prime of E above ` induced
by our embedding E → Q → Q` then there is an induced map OEλ

/λ → F` and
the induced F`-sheaf F0

λ,U/λ⊗F` is isomorphic to the sheaf FW associated to the
representation W = ⊗p|` ⊗τ∈Sp det(w−kτ+2)/2 Symmkτ−2 k2

p ⊗τ F`.
We begin by noting that Galois acts via an abelian quotient on many of the

cohomology groups that show up in forthcoming arguments.

Lemma 2.2. (a) Let U be any compact open subgroup of (D⊗K Af
K)× and let F be

a locally constant torsion sheaf on YU corresponding to a continuous representation
of U/U ′ for some normal open compact U ′ ⊆ U such that YU ′ → YU is étale with
covering group U/U ′. Then for i ∈ {0, 2} the action of GK on the cohomology
groups Hi(YU,K ,F) and Hi

c(YU,K ,F) factors through an abelian quotient.
(b) If Fλ,U is the sheaf associated to the data (~k,w) as above, then the action of

GK on H1(YU,K ,Fλ,U )/H1
p (YU,K ,Fλ,U ) is via an abelian quotient.

(c) The action of GK on the cokernel of the natural inclusion H1(XU,K ,F`) →
H1(YU,K ,F`) is via an abelian quotient.

Proof. (a) The pullback of F to YU ′ is constant and H0(YU,K ,F) can be identified
with a subspace of H0(YU ′,K ,F). The Galois action on this latter space is abelian,
as the geometric components of YU ′ are defined over an abelian extension of K.
This proves the result for H0, and the result for H0

c follows as H0
c is a subgroup of



8 KEVIN BUZZARD, FRED DIAMOND, AND FRAZER JARVIS

H0. For i = 2 the result follows from the i = 0 case and Poincaré duality, which
pairs H0 with H2

c and H2 with H0
c .

(b) The quotient is trivial in the non-split case, so we are instantly reduced to
the case K = Q, D = M2(Q) and Eλ = Q`. In this case the result is surely well-
known, but we sketch the proof for lack of a reference. The sheaf associated to the
data (k, w) is Q`-dual to the sheaf associated to (k,−w), so by Poincaré duality,
this is equivalent to showing the Galois action factors through an abelian quotient
on the kernel of the map (with w replaced by 2−w). Recall that H1

c (YU,Q,Fλ,U ) =
H1(XU,Q, j!Fλ,U ) where j : YU → XU is the natural inclusion, and that our map
factors as

H1(XU,Q, j!Fλ,U ) → H1(XU,Q, j∗Fλ,U ) → H1(YU,Q,Fλ,U ),

the first map being surjective, the second injective. Therefore it suffices to prove
that the action of GQ on

H0(XU,Q, j∗Fλ,U/j!Fλ,U ) = H0(ZU,Q, i∗j∗Fλ,U )

factors through an abelian quotient, where i : ZU → XU is the reduced closed
subscheme defined by the cusps. Shrinking U if necessary, we can assume there
is a universal generalised elliptic curve over XU (in the sense of [14]), and we let
s : EU → XU denote its restriction to the open subscheme whose fibres over closed
points are its identity components. Then we find that j∗Fλ,U is isomorphic to
Symmk−2(R1s∗Q`)((w + k− 2)/2), and since EU ×XU

ZU is isomorphic to Gm,ZU
,

we conclude that i∗j∗Fλ,U is isomorphic to Q`((w − k + 2)/2). The assertion now
follows from the fact that the cusps are defined over an abelian extension of Q.

(c) is similar to (b), but simpler. ¤

Let D, U , U ′, G and V be as in Definition 2.1. If ψ is a continuous character of
GK with values in F

×
` or Q

×
` , then we let ψA denote the corresponding character of

A×
K by class field theory (with uniformizers corresponding to geometric Frobenius

elements).

Lemma 2.3. Suppose that ψ : GK → F
×
` is a continuous character such that ψA

is trivial on det(U ′), and let χ denote the restriction of ψA to (O ⊗ Z`)×. Then
H1(YU,K ,FV⊗χ◦det) is isomorphic to H1(YU,K ,FV )(ψ) as GK-modules.

Proof. The restriction of ψ to GKU corresponds to χ via the isomorphism

GKU /GKU′
∼= det(U)/ det(U ′) ∼= (O/`)×.

Recall from section 1.1.2 of [10] that we have a commutative diagram

YU ′ → Spec KU ′

↓ ↓
YU → Spec KU

such that the action of G = U/U ′ on YU ′ is compatible via det with that of
det(U)/ det(U ′) on Spec KU ′ . So if we let Fχ denote the sheaf on Spec KU cor-
responding to the character χ, we see that Fχ◦det is isomorphic to the pull-back
of Fχ by the map YU → Spec KU . As this map induces a bijection on geomet-
ric components, it follows that H0(YU,K ,Fχ◦det) is isomorphic to H0(Spec KU ×K

K,Fχ) as GK-modules, which in turn is isomorphic to IndGK

GKU
F`(χ). Therefore

HomF`[GK ](F`(ψ),H0(YU,K ,Fχ◦det)) is one-dimensional. Let α be the image in
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H0(YU,K ,Fχ◦det) of a non-trivial element. Note that the restriction of α to each
component of YU,K is non-trivial, so cupping with α defines an isomorphism

H1(YU,K ,FV )⊗F`
F`α → H1(YU,K ,FV⊗χ◦det).

¤

Lemma 2.4. Let ρ : GK → GL2(F`) be continuous, irreducible and totally odd.
(a) ρ is a GK-subquotient of

(
Pic0(XU ′)[`](K)⊗ V

)G
if and only if ρ is a GK-

subquotient of H1(YU,K ,FV (1)).
(b) ρ is modular of weight W (an arbitrary finite-dimensional F`[G]-module) if

and only if ρ is modular of weight V for some Jordan-Hölder factor of W .

Proof. (a) First recall that Pic0(XU ′)[`](K) = H1(XU ′,K ,F`) ⊗ µ` as GK × G-
modules. By Lemma 2.2(c), the action of GK on the cokernel of the natural injection

H1(XU ′,K ,F`) → H1(YU ′,K ,F`)

factors through an abelian quotient. It follows that ρ is modular of weight V if and
only if ρ is an F`[GK ]-subquotient of (H1(YU ′,K ,F`)⊗ V )G ⊗ µ`.

The Hochschild-Serre spectral sequence now gives us an exact sequence of GK-
modules

H1(G,H0(YU ′,K ,F`)⊗ V ) → H1(YU,K ,FV ) →
→ (H1(YU ′,K ,F`)⊗ V )G → H2(G,H0(YU ′,K ,F`)⊗ V ).

By Lemma 2.2(a), the action of GK on the first and last terms factors through an
abelian quotient. It follows that ρ is modular of weight V if and only if ρ is an
F`[GK ]-subquotient of H1(YU,K ,FV ) ⊗ µ`. Finally note that by Lemma 2.3, we
have

H1(YU,K ,FV (1)) ∼= H1(YU,K ,FV )⊗ µ`,

and part (a) of the lemma follows.
(b) If 0 → W1 → W2 → W3 → 0 is a short exact sequence of finite-dimensional

F`[G]-modules then 0 → FW1 → FW2 → FW3 → 0 is a short exact sequence of
étale sheaves on YU , and (b) now follows from (a) and Lemma 2.2(a).

¤

Our chosen embeddings Q → C and Q → Q` and identification of the residue
field of Z` with F` allow us to identify SK with

⋃
p|` Sp. We now recall how this

notion of modularity is related to the existence of automorphic representations for
GL2 /K giving rise to ρ. We start by establishing some conventions.

When associating Galois representations to automorphic representations we shall
follow Carayol’s conventions in [10]. In particular our normalisations of local and
global class field theory will send geometric Frobenius elements to uniformisers and
our local-global compatibility will be Hecke’s rather than Langlands’ (the one that
preserves fields of definition rather than the one that behaves well under all functo-
rialities; the difference is a dual and a twist). We summarise Carayol’s theorem (in
fact we only need a weaker form which is essentially due to Langlands and Ohta),
and its strengthening by Taylor and Jarvis.

For k ≥ 2 and w integers of the same parity let Dk,w denote the discrete series
representation Dk,w of GL2(R) with central character t 7→ t−w defined in section 0.2
of [10]. For k = 1 and w an odd integer we define D1,w to be the (non-unitary,
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irreducible) principal series Ind(µ, ν) where the induction is unitary induction and
µ and ν are the (quasi-)characters of R× defined by µ(t) = |t|−w/2 sgn(t) and
ν(t) = |t|−w/2. Now for ~k ∈ ZSK with each kτ ≥ 1 and of the same parity, and w ∈ Z
of the same parity as the kτ , let us say that a cuspidal automorphic representation
π of GL2(AK) is holomorphic of weight (~k, w) (or “has weight (~k, w)” for short), if
πτ
∼= Dkτ ,w for each τ ∈ SK (of course many cuspidal automorphic representations

will not have any weight—we are picking out the ones that correspond to certain
holomorphic Hilbert modular forms). The theorem of Eichler, Shimura, Deligne,
Deligne–Serre, Langlands, Ohta, Carayol, Taylor, Blasius–Rogawski, Rogawski–
Tunnell and Jarvis associates a Galois representation ρπ : GK → GL2(Q`) to
a cuspidal automorphic representation π for GL2 /K of weight (~k, w), and the
correspondence π 7→ ρπ satisfies Hecke’s local-global compatibility at the finite
places of K of characteristic not dividing ` for which π is unramified. We remark
that local-global compatibility at the ramified places away from ` does not quite
appear to be known in this generality, although Carayol and Taylor establish it if
kτ ≥ 2 for all τ . See Theorem 7.2 of [36] for the current state of play if kτ = 1 for
some τ .

From this compatibility one deduces easily (see section 3 of [10] for example)
that if π is holomorphic of weight (~k, w) then the determinant of ρπ is the product
of a finite order character and ωw−1, where ω denotes the cyclotomic character.
Note that twisting by an appropriate power of the norm character gives bijections
between the automorphic representations of weight (~k, w) and (~k, w + 2n) for any
integer n; this corresponds to twisting by an appropriate power of the cyclotomic
character on the Galois side.

Let ρπ : GK → GL2(F`) denote the semisimplification of the reduction of ρπ.
Our goal now in this section is to relate the two notions of being modular of some
weight in the sense introduced above, and being modular in the sense of being
isomorphic to ρπ for some holomorphic π.

Proposition 2.5. Let (~k, w) ∈ ZSK

≥2 ×Z be integers all of the same parity. Suppose
ρ : GK → GL2(F`) is continuous, irreducible and totally odd. Then ρ ∼ ρπ for some
cuspidal automorphic representation π for GL2 /K of weight (~k, w) and level prime
to ` if and only if ρ is modular of weight V for some Jordan-Hölder constituent V
of

V~k,w :=
⊗

p|`

⊗

τ∈Sp

det (w−kτ )/2Symkτ−2k2
p ⊗τ F`.

Remark 2.6. Note that the representation V~k,w above differs from the representa-
tion ψ in section 2.1.1 of [10] by a twist due to the fact that we are using Jacobians
rather than étale cohomology.

Proof. Say V is a Jordan-Hölder constituent of V~k,w, and that ρ is modular of
weight V . Then, by definition, there is a quaternion algebra D/K satisfying the
usual conditions, and a level structure U prime to ` such that ρ is a subquotient
of (Pic0(XU ′)[`] ⊗ V )G (with notation as above). By Lemma 2.4(a) and (b) and
the remarks before Lemma 2.2, ρ is a GK-subquotient of H1(YU,K ,F0

λ,U/λ) ⊗ F`,
where F0

λ,U is the sheaf that Carayol associates to (~k, w). Recall that by results of
Jacquet-Langlands and Carayol [10], H1

p (YU,K ,Fλ,U ) is a direct sum of irreducible
2-dimensional `-adic representations ρπ for π as in the statement of the proposition.
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So by Lemma 2.2 and a standard cohomological argument, we see that ρ ∼= ρπ for
some cuspidal automorphic representation π on D× and hence for some cuspidal
automorphic representation on GL2 /K.

The reverse implication is not quite so straightforward because given π one needs
to see ρπ in the cohomology of a Shimura curve (the problem being that K might
have even degree and π might be principal series at all finite places). However,
arguments of Wiles and Taylor show that this problem is surmountable via “level-
raising.” Indeed, Theorem 1 of [59] and the remarks following it show that ρπ

∼= ρπ′

for π′ an automorphic representation of GL2 /K that is special at a finite place, and
the Galois representation associated to π′ does indeed show up in the cohomology of
a Shimura curve by the above-mentioned results of Jacquet-Langlands and Carayol.

¤

Corollary 2.7. If ρ : GK → GL2(F`) is continuous, absolutely odd, irreducible,
and ρ ∼= ρπ for some automorphic representation π of GL2 /K of level prime to `

and weight (~k, w) ∈ ZSK

≥1 × Z, then ρ is modular of weight V for some weight V .

Proof. If kτ ≥ 2 for all τ then this follows immediately from the previous propo-
sition. If kτ = 1 for one or more τ then it suffices to construct an automorphic
representation π′ of level prime to ` with ρπ

∼= ρπ′ , and with π′ of weight (~k′, w)
with k′τ ≥ 2 for all τ . This is done in [36] (via multiplication by an appropri-
ate modular form congruent to 1 mod `: in particular the result follows from the
Deligne–Serre lemma and Lemma 5.2 of loc. cit.). ¤

We can furthermore predict the local behaviour at primes over ` of the automor-
phic representations of weight (~k, w) giving rise to ρ. Before we start on this, here
is a simple lemma that will be of use to us later.

Lemma 2.8. If k is a finite field of characteristic ` and if V is an irreducible F`-
representation of GL2(k) then there is an irreducible Q`-representation of GL2(k)
whose reduction has V as a Jordan-Hölder factor. Furthermore there is a 1-
dimensional F`-representation χ of GL2(k) and an irreducible Q`-representation
of GL2(k) with a fixed vector for the subgroup

( ∗ ∗
0 1

)
whose reduction has χ⊗ V as

a Jordan-Hölder factor.

Proof. For 1-dimensional V the result is clear (use the Teichmüller lift) and for V
of dimension equal to the size of k, the Steinberg representation does the job. For
other V the lemma follows immediately from Proposition 1.1 of [17] (with J = S
in the notation of that paper). ¤

We now introduce the following rather naive version of a type. If L is a finite
extension of Q`, with integers OL, if π is a smooth irreducible complex represen-
tation of GL2(L) and if σ is a smooth irreducible representation of GL2(OL) (so σ
is finite-dimensional and its kernel contains an open subgroup of GL2(OL)), then
we say that π is of type σ if the restriction of π to a representation of GL2(OL)
contains a subspace isomorphic to σ (note that this is a much weaker and simpler
version of the usual notion of a type).

We now need a mild refinement of a level-raising result of Richard Taylor; un-
fortunately this refinement does not appear to be in the literature, so we sketch a
proof here. The reader who wants to follow the details is advised to have a copy of
Taylor’s paper [59] handy.
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Lemma 2.9. Suppose that [K : Q] is even and π is a cuspidal automorphic rep-
resentation of GL2 /K which has weight (~k, w). Suppose moreover that kτ ≥ 2 for
all infinite places τ . For all primes p | ` choose a smooth irreducible representation
σp of GL2(OKp) such that πp is of type σp.

Then there is a prime q of K not dividing ` and a cuspidal automorphic repre-
sentation π′ of GL2 /K, also of weight (~k,w), and such that

• ρπ ∼ ρπ′ ;
• π′q is an unramified special representation;
• π′p is of type σp each p | `.

Proof. (sketch). The main idea of the argument is contained in the proof of Theo-
rem 1 of [59], but it would be a little disingenuous to cite this result without further
comment because, as written, the proof does not keep track of types. It is not dif-
ficult to change the argument so that it does, however. We indicate what needs to
be changed in order to prove the result we want. Because of our assumptions about
the weight of π and the degree of K, the lemma can be deduced from a purely com-
binatorial statement about automorphic forms for the group of units of the totally
definite quaternion algebra D over K of discriminant 1. We need to check that the
system of eigenvalues associated to πD (the transfer of π to D×) is congruent to
the system of eigenvalues associated to an automorphic representation π′D which is
Steinberg at some place q (this much is done in [59]) and furthermore such that π′D,p

has type σp at all places above `. We do this by mimicking Taylor’s argument with
the following changes. Instead of working at level Γ1(n) as in [59], we work with a
more general compact open level structure U , assumed for simplicity to be a product
of local factors Up ⊂ GL2(Kp), for p running over the finite places of K. For p | `
we further assume that Up is a normal subgroup of GL2(Op), with Op the integers
in Kp (all this can be achieved by shrinking U if necessary). We define G` to be the
finite group

∏
p|`(GL2(Op)/Up); the group G` then acts on the space of automor-

phic forms of level U . Let σ = ⊗p|`σp, so σ is a finite-dimensional smooth complex
irreducible representation of G`, and fix a number field N which contains F , splits
D, contains the trace of σ(g) for all g ∈ G` and furthermore contains the values
of the (algebraic) central character ψ of πD. We define SD

(~k,w)
(U) = SD

(~k,w)
(U ;C),

the space of weight (~k,w) automorphic forms of level U for D×, as in Taylor’s pa-
per (our ~k is his k and our w is his µ; strictly speaking Taylor only considers the
case w = max{kτ − 2} but his arguments never assume this); then SD

(~k,w)
(U) is a

finite-dimensional complex vector space. We define SD
(~k,w)

(U)ψ to be the subspace

of SD
(~k,w)

(U) where the centre Z of D×(AK) acts via the character ψ. Note that for

a fixed U and (~k, w) there are only finitely many characters ψ for which SD
(~k,w)

(U)ψ

is non-zero (because the infinity type of ψ is determined by w); the character ψ is
an analogue of the Dirichlet character associated to a classical modular form. For
R a subring of C containing the integers of N we define SD

(~k,w)
(U ; R) as in Taylor’s

paper, and let SD
(~k,w)

(U ; R)ψ be SD
(~k,w)

(U ; R)∩SD
(~k,w)

(U)ψ. These spaces all have an

action of G`; we define SD
(~k,w)

(U)σ,ψ to be the σ-eigenspace of SD
(~k,w)

(U)ψ (that is,

the C[G`]-direct summand of SD
(~k,w)

(U)ψ cut out by the idempotent in C[G`] cor-

responding to σ), and we define SD
(~k,w)

(U ; R)σ,ψ to be SD
(~k,w)

(U ;R) ∩ SD
(~k,w)

(U)σ,ψ.
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Note that the natural projection map SD
(~k,w)

(U) → SD
(~k,w)

(U)σ,ψ typically does not
extend to a projection on the integral level, but some positive integer multiple of it
will be integral and defines a map e : SD

(~k,w)
(U ; R) → SD

(~k,w)
(U ; R)σ,ψ such that the

resulting map SD
(~k,w)

(U ; R)σ,ψ ⊆ SD
(~k,w)

(U ; R) → SD
(~k,w)

(U ;R)σ,ψ is multiplication
by a positive integer which depends on the size of G` and the class group associated
to det(U) but, crucially, is unchanged if one replaces U by the group U ∩ U0(q).
Note in particular that e is not necessarily an idempotent, but e2 = Ce for some
positive integer C.

Contrary to what Taylor implicitly asserts, there is in general no SL2(R)-invariant
perfect pairing on Symma(R2) if R is not a Q-algebra. However if R is a subring
of C then there is an SL2(R)-invariant injection from Symma(R2) to its R-dual,
with cokernel killed by some positive integer C ′ (which depends on a but not on
R), and this induces a pairing on Symma(R2) which is not perfect but which will
suffice to prove the result we need (some of Taylor’s constants need to be mod-
ified by this constant). Taylor uses this pairing to produce a perfect pairing on
SD

(~k,w)
(U ;C) and the analogue of this pairing that we shall need is the induced per-

fect pairing between SD
(~k,w)

(U ;C)σ,ψ and SD
(~k,w)

(U ;C)σ∗,ψ∗ , where σ∗ = σ.χ ◦ det
and ψ∗ = ψ.χ ◦ det, where χ is the finite order Hecke character associated to πD

on p.272 of [59] and det is the reduced norm D× → GL1. The reason for this twist
is that the SL2-invariant pairing on the coefficient sheaves is not GL2-invariant.

We now run through Taylor’s argument on pp.272–276 of loc. cit., making the
following changes. If SD

k (U1(n); R) occurs on the left hand side of a pairing, we
replace it by SD

(~k,w)
(U ; R)σ,ψ; if it occurs on the right hand side then we replace it

by SD
(~k,w)

(U ; R)σ∗,ψ∗ . We replace U1(n; q) with U ∩ Γ0(q) (with Γ0(q) denoting the
usual level structure, namely the matrices which are upper triangular modulo q),
and replacing the Hecke algebra TD

k (n) in [59] by the sub-Z-algebra T(~k,w)(U)σ,ψ

of EndC(SD
(~k,w)

(U)σ,ψ) generated only by Hecke operators Tq at the unramified
primes q. These Hecke algebras are as big as we shall need for our application—we
do not need to consider the operators Sq as we have fixed a central character, and
we also do not need to consider Hecke operators at the ramified places.

The analogues of the assertions about direct sums in Lemma 1 of [59] are still
true on the (σ, ψ)-component of SD

(~k,w)
(U) (note that Taylor’s map i commutes

with the action of G` and with the action of Z (the centre of D×(AK))), and the
analogue of Lemma 2 also holds (indeed the proof given remains valid when SD

k (n)
is replaced by SD

(~k,w)
(U)σ,ψ etc., as the map i† also commutes with the G` and

Z-action). The analogue of Lemma 3 that we need is that for a fixed compact open
subgroup X ⊂ GL1(A

f
K) there are positive integer constants C1 and C2 such that

for any compact open U with det(U) = X we have

C1〈SD
(~k,w)

(U ;R)σ,ψ, SD
(~k,w)

(U ; R)σ∗,ψ∗〉 ⊆ R

and for f ∈ SD
(~k,w)

(U ;C)σ,ψ with

〈f, SD
(~k,w)

(U ; R)σ∗,ψ∗〉 ⊆ R
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we have C2f ∈ SD
(~k,w)

(u; R)σ,ψ. The statement about C1 follows from Taylor’s
Lemma 3, and that about C2 can also be deduced from Taylor’s result, the com-
ments about C ′ above, the fact that the pairing 〈, 〉 restricts to the zero pairing
between the (σ, ψ)-eigenspace and the (σ′, ψ′)-eigenspace if (σ′, ψ′) 6= (σ∗, ψ∗) (us-
ing the argument on the bottom of p.272 of [59]) and the existence of the “projector”
e above.

We need the (σ∗, ψ∗)-analogue of Lemma 4 of [59] and this is true—indeed it
can be deduced from Lemma 4 of [59] by restricting to the (σ∗, ψ∗)-eigenspace.

We can now prove the analogue of Theorem 1 of [59] (where we replace Taylor’s
Hecke algebras with ours as indicated above); we simply mimic Taylor’s beautiful
proof on p.276 of loc. cit.; the assiduous reader can check that we have explained
the analogues of all the ingredients that we need. Now using a standard Cebotarev
argument we deduce that given πD of weight (~k, w), we can find a prime q - ` of K
at which πD is unramified principal series and such that the associated system of
eigenvalues of T(~k,w)(U)σ,ψ is congruent (modulo some prime above `) to a system
of eigenvalues occurring in T(~k,w)(U0(q))new

σ,ψ . ¤

Using this beefed-up version of Taylor’s level-raising theorem, we can deduce
a beefed-up version of Proposition 2.5. Suppose that ~k ∈ ZSK and w ∈ Z with
kτ ≥ 2 and of the same parity as w for all τ . For each p|`, suppose that σp

is a smooth irreducible representation of GL2(OK,p). Via our fixed embeddings
Q → C and Q → Q`, and our identification of the residue field of Q` with F`,
we can unambiguously define the semisimplification σp of the mod ` reduction of
σp; so σp is a representation of GL2(OK,p) on a finite-dimensional F`-vector space.
Define σ := ⊗p|`σp and σ := ⊗p|`σp. Finally let G` denote a finite quotient of
GL2(OK ⊗ Z`) through which σ factors.

Proposition 2.10. For an irreducible representation ρ : GK → GL2(F`), the
following are equivalent:

• ρ ∼ ρπ for some cuspidal holomorphic weight (~k,w) automorphic represen-
tation π of GL2(AK) such that πp has type σp for each p|`.

• ρ is modular of weight V for some Jordan-Hölder constituent V of

W := σ∨ ⊗
⊗

p|`

⊗

τ∈Sp

(
det (w−kτ )/2Symkτ−2k2

p ⊗τ F`

)
.

Proof. Lemma 2.9 shows that ρ ∼ ρπ for some π as above if and only if there are D
and U as usual, and a compact open subgroup U ′′ of U with U/U ′′ = G`, such that
ρ is the mod ` reduction of an irreducible 2-dimensional Q`-representation ρ̃ which
is a direct summand (equivalently, a subquotient) of HomG`

(σ,H1
p (YU ′′,K ,Fλ,U ′′)),

with Fλ,U ′′ the Eλ-sheaf constructed by Carayol on XU ′′ corresponding to (~k, w).
Here we assume U is small enough for the projection φ : YU ′′ → YU to be étale with
covering group G`. Furthermore our coefficient field Eλ is assumed large enough to
satisfy the conditions that Carayol requires of it, and also large enough to afford a
model for σ and to ensure that all the irreducible subquotients of H1(YU ′′,K ,Fλ,U ′′)
have dimension either 1 or 2. By Lemma 2.2(b) the latter condition is equivalent to ρ
being isomorphic to the mod ` reduction of an irreducible 2-dimensional subquotient
of HomG`

(σ,H1(YU ′′,K ,Fλ,U ′′)).
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Now let let Fσ∨ denote the Eλ-sheaf on YU associated to the dual of σ, and
let Fλ,U denote the Eλ-sheaf constructed by Carayol on YU and corresponding to
weight (~k, w). Then

HomG`
(σ,H1(YU ′′,K ,Fλ,U ′′)) = (H1(YU ′′,K ,Fλ,U ′′)⊗ σ∨)G`

= H1(YU ′′,K ,Fλ,U ′′ ⊗ φ∗Fσ∨)G`

= H1(YU ′′,K , φ∗(Fλ,U ⊗Fσ∨))G`

= H1(YU,K ,Fλ,U ⊗Fσ∨),

the last equality coming, for example, from the Hochschild-Serre spectral sequence
and the fact that the order of G` is invertible in the (characteristic zero) field Eλ.

Let Oλ denote the integers in Eλ, let F0
λ,U and F0

σ∨ be Oλ-lattices in Fλ,U

and Fσ∨ and set F0 := F0
λ,U ⊗ F0

σ∨ . We then deduce that an irreducible ρ is
the reduction of an irreducible ρπ as above if and only if it is a subquotient of
H1(YU,K ,F0)tf/λ, where λ denotes the maximal ideal of Oλ and tf denotes the
maximal torsion-free quotient. Now a standard argument shows that this is so if
and only if ρ is a subquotient of H1(YU,K ,F0/λ) (the torsion in H1(YU,K ,F0) is a
subquotient of H0(YU,K ,F0/`N ) for some N and hence the Galois representations
arising as subquotients of it are all 1-dimensional by Lemma 2.2(a), and the cokernel
of the injection H1(YU,K ,F0)/λ → H1(YU,K ,F0/λ) is contained in H2(YU,K ,F0)[λ]
and hence in H2(YU,K ,F0/λN ) for some N , and the irreducible subquotients of this
group are also all 1-dimensional by Lemma 2.2(a)). To finish the proof it suffices
by Lemma 2.4 to check that F0/λ ⊗ F` and W (1) have the same Jordan-Hölder
factors, which follows immediately from the definitions. ¤

For τ ∈ Sp, we denote by ωτ the fundamental character of IKp defined by
composing τ with the homomorphism IKp → k×p obtained from local class field
theory (with the convention that uniformizers correspond to geometric Frobenius
elements). We then have the following compatibility among determinants, central
characters and twists.

Corollary 2.11. (1) If ρ is modular of weight V and V has central character
⊗p|`

∏
τ∈Sp

τ cτ , then

det ρ|IKp
=

∏

τ∈Sp

ωcτ+1
τ

for each p|`.
(2) Let χ : GK → F

×
` be such that χ|IKp

=
∏

τ∈Sp
ωcτ

τ for each p|`. Then ρ is
modular of weight V if and only χρ is modular of weight V ⊗ Vχ, where

Vχ =
⊗

p|`

⊗

τ∈Sp

det cτ k2
p ⊗τ F`.

Proof. (1) Let T denote the Teichmüller lift of the norm map N : (O/`)× → F×` . By
Lemma 2.7 there is an irreducible Q`-representation σ of G such that the reduction
of σ∨⊗(T−1◦det) contains V as a Jordan-Hölder factor. By Proposition 2.10 we see
that if ρ is modular of weight V then ρ ∼ ρπ for some π of weight (~2, 0) and type σ.
Now by section 5.6.1 of [10] we see that det(ρπ) = χ−1

π ω−1 where χπ is the central
character of π and ω is the cyclotomic character. Now χπ can be computed on O×Kp
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because it is the central character of σp, which is the inverse of the central character
αp of σ∨p . We deduce that det(ρ)|Ip = αpω

−1 = αpN
−1
p , where Np =

∏
τ∈Sp

is
the map IKp → k×p → F`. Finally the fact that V is a Jordan-Hölder factor of the
reduction of σ∨ ⊗ (T−1 ◦ det) implies that the central character of V (considered
as a representation of GL2(kp)) is αp.N

−2
p and the result follows.

(2) is simpler and could have been deduced earlier; in fact it is immediate from
Lemma 2.3 and Lemma 2.4(a). ¤

Recall that for K = Q, every modular ρ arises from a form of level prime to `
and some weight k ≥ 2. Moreover, after twisting ρ, one may take the weight k to
be in the range 2 ≤ k ≤ `+1 (see [20]). This is in general false for larger K. Indeed
if ρ arises from a form of weight (~k, w) and level prime to `, then det ρ|Ip = ω−1−w

for all p|`, and it is easy to construct representations none of whose twists have this
property: choose for example an odd prime ` inert in a real quadratic K, and a
totally odd ρ such that det ρ|I`

= ωa
τ for some odd integer a (where τ : OK/` → F`);

see [15] for some explicit examples. On the other hand, it is still the case that every
modular ρ arises from a form of weight (2, . . . , 2) and some level not necessarily
prime to `. Moreover, after twisting ρ, we can assume the form has level dividing
n` for some n prime to `.

Corollary 2.12. For an irreducible ρ : GK → GL2(F`) the following are equivalent:

(1) ρ ∼ ρπ for some holomorphic cuspidal automorphic representation π of
GL2(AK);

(2) ρ ∼ ρπ for some cuspidal automorphic representation π of GL2(AK) of
weight (~2, 0);

(3) χρ ∼ ρπ for some character χ and some cuspidal automorphic represen-
tation π of GL2(AK); of weight (~2, 0) and level U = U `.U1(`) (the adelic
analogue of “level Γ1(`) at `”);

(4) ρ is modular of weight V for some Serre weight V .

Proof. It is clear that (3) ⇒ (2) ⇒ (1). Proposition 2.10 shows that (1) ⇒ (4) if
kτ ≥ 2 for all τ ; if some of the kτ are equal to 1 then one has to first multiply by an
Eisenstein series to increase the weight ~k: more formally one uses the Deligne–Serre
lemma and Lemma 5.2 of [36]. Finally we need to show that (4) ⇒ (3). If (4) holds
then by Lemma 2.8 there is an irreducible Q`-representation σ of G with a

( ∗ ∗
0 1

)
-

fixed vector such that the reduction of σ∨ ⊗⊗
p|`⊗τ∈Sp det−1 contains some twist

of V . We deduce (3) from Lemma 2.11(2) and the case (~k, w) = (~2, 0) of 2.10. ¤

We remark that, in contrast to the K = Q case one does not appear to be
able to control the tame level as much as one might conjecture, because of “unit
group” obstructions that appear when choosing a global character with given local
properties.

3. The weight conjecture

Suppose that ρ : GK → GL2(F`) is continuous, irreducible and totally odd. The
aim of this section is to provide a conjectural recipe for the set of V such that ρ is
modular of weight V .



ON SERRE’S CONJECTURE OVER TOTALLY REAL FIELDS 17

For each prime p of K dividing `, we will define a set of representations Wp(ρ) of
GL2(kp) depending only on ρ|IKp

, and then define the conjectural weight set W (ρ)
as the set of Serre weights of the form ⊗F`

Vp with Vp ∈ Wp(ρ).
We need some more notation before defining Wp(ρ). With our prime p dividing

` fixed for now, we write simply k, f and S for kp, fp and Sp. Fix an embedding
K → Kp and identify D = GKp and I = IKp with subgroups of GK . Let K ′

p be
the unramified quadratic extension of Kp in Kp and let k′ denote its residue field.
We let S′ denote the set of embeddings k′ → F`, let D′ = GK′

p
and define a map

π : S′ → S by τ ′ 7→ τ ′|k.
Suppose that L ⊂ Kp is a finite unramified extension of Kp and σ is an embed-

ding of its residue field OL/`OL in F
×
` . We denote by ωσ the fundamental character

of I = IL defined by composing σ with the homomorphism IL → (OL/`OL)× gotten
from local class field theory.

In defining Wp(ρ), we treat separately the cases where ρ|D is irreducible and
where it is reducible.

3.1. The irreducible case. If ρ|D is irreducible, we define Wp(ρ) by the following
rule:

(1)
ρ|I ∼

∏
τ∈S ωaτ

τ

(∏
τ ′∈J ω

bπ(τ′)
τ ′ 0

0
∏

τ ′ /∈J ω
bπ(τ′)
τ ′

)

V~a,~b ∈ Wp(ρ) ⇐⇒
for some J ⊂ S′ such that π : J

∼−→S.

Since ρ|D is irreducible, there is a character ξ : D′ → F
×
` such that ρ|D ∼ IndD

D′ξ.
We define

W ′(ξ) = { (V~a,~b, J) | J ⊂ S′, π : J
∼−→S, ξ|I =

∏

τ∈S

ωaτ
τ

∏

τ ′∈J

ω
bπ(τ′)
τ ′ }.

Thus Wp(ρ) = {V | (V, J) ∈ W ′(ξ) for some J }. (Note that replacing ξ by its con-
jugate under D/D′ replaces J by its complement.) We shall see that the projection
maps W ′(ξ) → Wp(ρ) and W ′(ξ) → { J ⊂ S′ |π : J

∼−→S } are typically bijections,
so that |Wp(ρ)| = 2f .

We now choose an element of S′ which we denote τ ′0, and then let τ ′i = τ ′0 ◦Frobi
`

and τi = π(τ ′i). Note that S = { τi | i ∈ Z/fZ } and S′ = { τ ′i | i ∈ Z/2fZ }. Letting
ω = ωτ0 and ω′ = ωτ ′0 , we have ωτi = ω`i

, ωτ ′i = (ω′)`i

and ω = (ω′)`f+1. Note that
ξ|I = (ω′)n for some n mod `2f − 1, and since ρ|D is irreducible, n is not divisible
by `f + 1.

For B ⊂ {0, . . . , f − 1} (where the symbol ⊂ includes the case of equality), let
JB = {τ ′i |i ∈ B} ∪ {τ ′f+i|i 6∈ B}. If a ∈ Z/(`f − 1)Z, ~b = (b0, . . . , bf−1) with each
bi ∈ {1, . . . , `} and B ⊂ {0, . . . , f − 1}, let

n′
a,~b,B

= a(`f + 1) +
∑

i∈B

bi`
i +

∑

i 6∈B

bi`
f+i mod `2f − 1.

Then W ′(ξ) is in bijection with the set of triples (a,~b,B) as above with n ≡
n′

a,~b,B
mod `2f − 1. Now note for each B ⊂ {0, . . . , f − 1}, there is a unique such
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triple (a,~b,B) with this property for each solution of

n ≡
∑

i∈B

bi`
i −

∑

i6∈B

bi`
i mod `f + 1

with b0, . . . , bf−1 ∈ {1, . . . , `}. But the values of
∑

i∈B bi`
i −∑

i 6∈B bi`
i are the `f

consecutive integers from n′B − `f to n′B − 1 where

n′B =
∑

i∈B

`i+1 −
∑

i 6∈B

`i + 1,

so there is a solution as long as n 6≡ n′B mod `f + 1 and this solution is unique. We
have thus shown that W ′(ξ) is in bijection with the set of B such n 6≡ n′B mod `f +1;
moreover the projection W ′(ξ) → { J ⊂ S′ |π : J

∼−→S } is injective.
Note that if f is odd and B is either {0, 2, . . . , f − 1} or B = {1, 3 . . . , f − 2},

then n′B ≡ 0 mod `f + 1. To see that the converse holds as well, observe that

−(`f + 1) < −`
`f−1 − 1

`− 1
≤ n′B ≤ `f+1 − 1

`− 1
< 2(`f + 1).

Thus if n′B ≡ 0 mod `f + 1, then n′B = 0 or `f + 1. If n′B = 0, then solving
∑

i∈B

`i+1 −
∑

i6∈B

`i + 1 ≡ 0 mod `r

by induction on r, we find that f is odd and B = {1, 3, . . . , f − 2}. Similarly if
n′B = `f + 1, then f is odd and B = {0, 2, . . . , f − 1}.

We now show that if f is even, then the 2f values of n′B mod `f + 1 are distinct.
First note that

n′B ≡ −1 + (` + 1)
∑

i∈B∗
(−1)i`i mod `f + 1,

where B∗ = ({0, 2, . . . , f−2}∩B)∪({1, 3, . . . , f−1}\B). Thus n′B1
≡ n′B2

mod `f+1
if and only if ∑

i∈B∗1

(−1)i`i ≡
∑

i∈B∗2

(−1)i`i mod (`f + 1)/d,

where d = gcd(` + 1, `f + 1) ≤ ` − 1 (so d = 2 if ` is odd, and d = 1 if ` = 2).
But these two sums differ by at most (`f − 1)/(` − 1) < (`f + 1)/d, so the above
congruence holds if and only if equality holds, in which case B∗

1 = B∗
2 , so B1 = B2.

Next we show that if f and ` are odd, then the 2f −2 non-zero values of n′B mod
`f + 1 are distinct. In this case we have

n′B ≡ (` + 1)
∑

i∈B∗
(−1)i`i mod `f + 1,

where B∗ = ({0, 2, . . . , f−1}∩B)∪({1, 3, . . . , f−2}\B). Thus n′B1
≡ n′B2

mod `f+1
if and only if ∑

i∈B∗1

(−1)i`i ≡
∑

i∈B∗2

(−1)i`i mod (`f + 1)/(` + 1).

But these two sums differ by at most (`f − 1)/(`− 1) < 2(`f + 1)/(` + 1), so if the
above congruence holds then either equality holds, in which case B1 = B2, or

∑

i∈B∗2

(−1)i`i =
∑

i∈B∗1

(−1)i`i +
f−1∑

i=0

(−1)i`i,
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exchanging B1 and B2 if necessary. Solving mod`r inductively on r, we see that
the only possibility is that B∗

1 = ∅ and B∗
2 = {0, 1, . . . , f−1}, but these are precisely

the cases where n′B ≡ 0 mod `f + 1.
Finally suppose that f is odd and ` = 2. In this case we have

n′B ≡ 3
∑

i∈B∗
(−1)i2i mod 2f + 1,

where B∗ = ({0, 2, . . . , f − 1} ∩ B) ∪ ({1, 3, . . . , f − 2} \ B). In particular n′B ≡
0 mod 3. Moreover we have the inequality |n′B1

− n′B2
| < 3(2f + 1), showing that

each congruence class mod 2f + 1 arises as n′B for at most 3 values of B. It follows
that each of the (2f − 2)/3 non-zero multiples of 3 mod 2f + 1 arises as n′B for
exactly 3 values of B.

We have thus proved the following propositions:

Proposition 3.1. Suppose that ` is odd. If f is even, then the congruence classes
mod `f + 1 of the form

−1 + (` + 1)
∑

i∈B∗
(−1)i`i

are distinct and non-zero as B∗ runs through all subsets of {0, 1, . . . , f − 1}. If f
is odd, then the congruence classes mod `f + 1 of the form

(` + 1)
∑

i∈B∗
(−1)i`i

are distinct and non-zero as B∗ runs through all non-empty proper subsets of
{0, 1, . . . , f − 1}. Letting A denote the set of such classes in each case, we have

|W ′(ξ)| =
{

2f , if n 6∈ A,
2f − 1, if n ∈ A.

Proposition 3.2. Suppose that ` = 2 and ξ|I = (ω′)n. Then

|W ′(ξ)| =




2f − 1, if f is even,
2f , if f is odd and 3 - n,
2f − 3, if f is odd and 3 | n.

Multiple B can occur with the same (a,~b); for example if f = 3 and n = 1,
then (−`2, (1, `, 1), {0, 1}) and (−`2, (1, `, 1), {0, 2}) are both in W ′(ξ), so the map
W ′(ξ) → Wp(ρ) is not injective. (In this case in fact, |W ′(ξ)| = 8, but |Wp(ρ)| = 6.)

Proposition 3.3. The map W ′(ξ) → Wp(ρ) fails to be injective if and only if
`rn ≡ m mod `f + 1 for some integers r,m with |m| ≤ `(`f−2 − 1)/(`− 1).

Proof. Suppose first that W ′(ξ) → Wp(ρ) is not injective. This means that for
some a, ~b and B1 6= B2, we have

(2) n ≡ n′
a,~b,B1

≡ n′
a,~b,B2

mod `2f − 1.

First we note that B2 cannot be the complement B1 of B1 in {0, . . . , f−1} since

n′
a,~b,B1

≡ n′
a,~b,B1

≡ `fn′
a,~b,B1

mod `2f − 1

would imply n ≡ 0 mod `f +1, contradicting the irreducibility of ρ|D. We thus have
J2 6= S′ \ J1, where J1 = JB1 and J2 = JB2 . One now checks that (possibly after
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switching J1 and J2) we may find t ∈ Z/2fZ so that τ ′t−1 ∈ J1 \J2 and τ ′t ∈ J1∩J2.
We then have

`f−tn ≡ n′
a′,~b′,B′1

≡ n′
a′,~b′,B′2

mod `2f − 1,

where a′ ≡ `−ta mod `f − 1, b′i = bi+t mod f for i ∈ {0, . . . , f − 1} and B′
ν is such

that JB′ν = Jν ◦ Frobf−t
` for ν = 1, 2. Replacing n with `f−tn, we may thus assume

that τ ′f−1 ∈ J1\J2 and τ ′f ∈ J1∩J2, or equivalently, f−1 ∈ B1\B2 and 0 6∈ B1∪B2.
Returning to the congruence (2), we have

∑

i∈B1

bi`
i + `f

∑

i6∈B1

bi`
i ≡

∑

i∈B2

bi`
i + `f

∑

i 6∈B2

bi`
i mod `2f − 1,

or equivalently, ∑

i∈B1\B2

bi`
i ≡

∑

i∈B2\B1

bi`
i mod `f + 1.

Since each sum is less than 2(`f + 1), they must either be equal or differ by `f + 1,
and since 0 6∈ B1 ∪ B2, each sum is divisible by `, so in fact equality holds. Since
f − 1 ∈ B1 \B2, we have

bf−1`
f−1 ≤

∑

i∈B1\B2

bi`
i =

∑

i∈B2\B1

bi`
i ≤

f−1∑

i=2

`i < 2`f−1,

so bf−1 = 1. Moreover if bf−2, bf−3, . . . , bs+1 are all less than ` for some s < f − 2,
then we must have bf−2 = bf−3 = · · · = bs+1 = `−1 and f−2, f−3 . . . , s ∈ B2\B1,
for if either fails, we find that

∑

i∈B2\B1

bi`
i ≤ (`− 1)

f−2∑

i=s+1

`i +
s∑

i=2

`i < `f−1.

Since 0 6∈ B2 \ B1, we conclude that for some s with 0 < s < f − 1, we have
(bs, bs+1, . . . , bf−1) = (`, ` − 1, . . . , ` − 1, 1) and s, s + 1, . . . , f − 2 ∈ B2 \ B1. It
follows that

n ≡
∑

i∈B1

bi`
i −

∑

i 6∈B1

bi`
i ≡

∑

i∈B1,i<s

bi`
i −

∑

i6∈B1,i<s

bi`
i mod `f + 1,

and this last difference has absolute value at most `(`f−2 − 1)/(`− 1).
Conversely suppose that `rn ≡ m mod `f + 1 for some r,m with |m| ≤ `(`f−2 −

1)/(`− 1). Replacing r by r + f if necessary, we may assume m > 0 and then
`s − 1
`− 1

≤ m ≤ ` · `s − 1
`− 1

for some s with 0 < s < f − 1. We can then write m =
∑s−1

i=0 bi`
i for some

b0, b1, . . . , bs−1 ∈ {1, . . . , `}. We can then choose a ∈ Z/(`f − 1)Z so that

`rn ≡ na,~b,B1
≡ na,~b,B2

mod `2f − 1,

where ~b = (b0, b1, . . . , bs−1, `, ` − 1, . . . , ` − 1, 1), B1 = {0, 1, . . . , f − 2} and B2 =
{0, 1, . . . , s− 1, f − 1}. We conclude that

n ≡ n′
a′,~b′,B′1

≡ n′
a′,~b′,B′2

mod `2f − 1,

where a′ ≡ `−ra mod `f − 1, b′i = bi+r mod f for i ∈ {0, . . . , f − 1} and B′
ν is such

that JB′ν = JBν ◦ Frob−r
` for ν = 1, 2. ¤
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3.2. The reducible case. Now suppose ρ|D is reducible, write ρ|D ∼
(

χ1 ∗
0 χ2

)

and let cρ denote the corresponding class in H1(Kp, χ1χ
−1
2 ). Consider now the set

of pairs

W ′(χ1, χ2) = { (V~a,~b, J) | J ⊂ S, χ1|IKp
=

∏

τ∈S

ωaτ
τ

∏

τ∈J

ωbτ
τ , χ2|IKp

=
∏

τ∈S

ωaτ
τ

∏

τ 6∈J

ωbτ
τ }.

Note that interchanging χ1 and χ2 replaces J by its complement. We shall see
that the projection map π2 : W ′(χ1, χ2) → {J ⊂ S} is typically a bijection,
so that |W ′(χ1, χ2)| = 2f . However Wp(ρ) will be defined below as a subset of
π1(W ′(χ1, χ2)) depending on cρ.

We now analyse the set W ′(χ1, χ2) in a manner analogous to the irreducible case.
We write χν = ωnν with nν ∈ Z/(`f − 1)Z for ν = 1, 2, and we let n = n1 − n2. If
a ∈ Z/(`f−1)Z, ~b = (b0, . . . , bf−1) with each bi ∈ {1, . . . , `} and B ⊂ {0, . . . , f−1},
let

na,~b,B = a +
∑

i∈B

bi`
i mod `f − 1.

Then W ′(χ1, χ2) is in bijection with the set of triples (a,~b,B) as above with n1 ≡
na,~b,B mod `f − 1 and n2 ≡ na,~b,B mod `f − 1 where B is the complement of B in
{0, . . . , f − 1}. Note that for each B ⊂ {0, . . . , f − 1} there is a unique such triple
for each solution of

n ≡
∑

i∈B

bi`
i −

∑

i 6∈B

bi`
i mod `f − 1.

with b0, . . . , bf−1 ∈ {1, . . . , `}. But the values of
∑

i∈B bi`
i −∑

i 6∈B bi`
i are the `f

consecutive integers from nB + 1− `f to nB where

nB =
∑

i∈B

`i+1 −
∑

i 6∈B

`i,

so there is a unique solution if n 6≡ nB mod `f −1 and two solutions if n ≡ nB mod
`f − 1. In particular the projection W ′(χ1, χ2) → {J ⊂ S} is surjective and
|W ′(χ1, χ2)| = 2f + |{B |n ≡ nB mod `f − 1}|.

We now show that if f is odd, then the 2f values of nB mod `f − 1 are distinct,
unless ` = 2 or 3, in which case n{0,...,f−1} ≡ n∅ mod `f−1 and the rest are distinct.
First note that

nB ≡ −1 + (` + 1)
∑

i∈B∗
(−1)i`i mod `f − 1,

where B∗ = ({0, 2, . . . , f−1}∩B)∪({1, 3, . . . , f−2}\B). Thus nB1 ≡ nB2 mod `f−1
if and only if ∑

i∈B∗1

(−1)i`i ≡
∑

i∈B∗2

(−1)i`i mod (`f − 1)/d,

where d = gcd(`+1, `f−1). If ` > 3, then d = 2 and the two sums differ by at most
(`f − 1)/(`− 1) < (`f − 1)/d, so the above congruence holds if and only if equality
holds, in which case B∗

1 = B∗
2 , so B1 = B2. If ` = 2 or 3, then d = ` − 1, but the

two sums differ by (`f − 1)/(`− 1) only when one of B1 or B2 is {0, . . . , f − 1} and
the other is empty.
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Now consider the case where f is even and ` > 3. We then have

nB ≡ (` + 1)
∑

i∈B∗
(−1)i`i mod `f − 1,

where B∗ = ({0, 2, . . . , f−2}∩B)∪({1, 3, . . . , f−1}\B). Thus nB1 ≡ nB2 mod `f−1
if and only if

∑

i∈B∗1

(−1)i`i ≡
∑

i∈B∗2

(−1)i`i mod (`f − 1)/(` + 1).

But these two sums differ by at most (`f − 1)/(` − 1), which is less than 2(`f −
1)/(` + 1). So if the above congruence holds then either equality holds, in which
case B1 = B2, or

∑

i∈B∗2

(−1)i`i =
∑

i∈B∗1

(−1)i`i +
f−1∑

i=0

(−1)i`i,

exchanging B1 and B2 if necessary. Solving mod`r inductively on r, we see that
the only possibility is that B∗

1 = ∅ and B∗
2 = {0, 1, . . . , f − 1}, in which case

nBν ≡ 0 mod `f − 1.
If f is even and ` = 3, then the situation is the same, except that we have

(`f − 1)/(`− 1) = 2(`f − 1)/(`+1), so in addition to the possibilities that arose for
` > 3, we have

n{0,...,f−1} ≡ n∅ ≡ (`f − 1)/2 mod `f − 1

as for odd f .
Finally suppose that f is even and ` = 2. In this case we have

nB ≡ 3
∑

i∈B∗
(−1)i2i mod 2f − 1,

where B∗ = ({0, 2, . . . , f − 1} ∩ B) ∪ ({1, 3, . . . , f − 2} \ B). In particular nB ≡
0 mod 3. Moreover we have |nB1 − nB2 | ≤ 3(2f − 1) with equality possible only
when one of B1 or B2 is {0, . . . , f − 1} and the other is empty, in which case
nBν ≡ 0 mod 2f − 1. Thus each non-zero congruence class mod2f − 1 arises as nB

for at most 3 values of B, while 0 arises for at most 4. It follows that each of the
(2f − 4)/3 non-zero multiples of 3 mod 2f − 1 arises as nB for exactly 3 values of
B, while 0 arises for exactly 4 values.

We have thus proved the following propositions:

Proposition 3.4. Suppose that ` > 3. If f is odd, then the congruence classes
mod `f − 1 of the form

−1 + (` + 1)
∑

i∈B∗
(−1)i`i

are distinct and non-zero as B∗ runs through all subsets of {0, 1, . . . , f − 1}. If f
is even, then the congruence classes mod `f − 1 of the form

(` + 1)
∑

i∈B∗
(−1)i`i
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are distinct and non-zero as B∗ runs through all non-empty proper subsets of
{0, 1, . . . , f − 1}. Letting A denote the set of such classes in each case, we have

|W ′(χ1, χ2)| =




2f + 2, if n = 0 and f is even,
2f + 1, if n ∈ A,
2f , otherwise.

Proposition 3.5. Suppose that ` = 3. If f is odd, then the congruence classes
mod 3f − 1 of the form

−1 + 4
∑

i∈B∗
(−1)i3i

are distinct and non-zero mod(3f − 1)/2 as B∗ runs through all the subsets of
{0, 1, . . . , f −1} other than {0, 2, . . . , f −1} and {1, 3, . . . , f −2}. If f is even, then
the congruence classes mod3f − 1 of the form

4
∑

i∈B∗
(−1)i3i

are distinct and non-zero mod(3f − 1)/2 as B∗ runs through all non-empty proper
subsets of {0, 1, . . . , f −1} other than {0, 2, . . . , f −2} and {1, 3, . . . , f −1}. Letting
A denote the set of such classes in each case, we have

|W ′(χ1, χ2)| =




2f + 2, if n = 0 and f is even, or n = (`f − 1)/2
2f + 1, if n ∈ A,
2f , otherwise.

Proposition 3.6. Suppose that ` = 2. Then

|W ′(χ1, χ2)| =





2f + 4, if n = 0 and f is even,
2f + 3 if n 6= 0, 3|n and f is even,
2f + 2, if n = 0 and f is odd,
2f + 1, if n 6= 0 and f is odd,
2f , if 3 - n and f is even.

As in the irreducible case, multiple B can occur with the same (a,~b).

Proposition 3.7. The projection map from W ′(χ1, χ2) onto its first component
fails to be injective if and only if `rn ≡ m mod `f − 1 for some integers r,m with
|m| ≤ max{0, `(`f−2 − 1)/(`− 1)}.
Proof. The statement that the projection map from W ′(χ1, χ2) to its first compo-
nent is not injective is equivalent to the statement that for some a, ~b and B1 6= B2,
we have

n1 ≡ na,~b,B1
≡ na,~b,B2

mod `f − 1
and

n2 ≡ na,~b,B1
≡ na,~b,B2

mod `f − 1,

where B denotes the complement of B in {0, 1, 2, . . . , f − 1}.
We first deal with the special case n = 0. In this case the map is never injective;

take ~b = (` − 1, ` − 1, . . . , ` − 1), B1 = {0, 1, . . . , f − 1} and B2 = ∅ (with the
appropriate value of a).

So let us now assume that n 6≡ 0 mod `f − 1. Suppose first that the projection
map is not injective. Because n 6≡ 0 we check that B2 cannot be the complement
of B1 (note that this finishes the proof in the case f = 1). We can then assume
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f − 1 ∈ B1 \ B2 and 0 6∈ (B1 \ B2) ∪ (B2 \ B1) after multiplying n by a power of
` as in the irreducible case. The rest of the argument is similar to the irreducible
case, except that ∑

i∈B1\B2

bi`
i −

∑

i∈B2\B1

bi`
i = 2(`f − 1)

is possible if ` = 2, but this forces n ≡ 0 mod `f − 1. ¤
For each pair α = (V~a,~b, J) ∈ W ′(χ1, χ2) we shall define below a subspace Lα ⊂

H1(Kp,F`(χ1χ
−1
2 )) of dimension |J |+ δ, where δ = 0 except in certain cases where

χ1χ
−1
2 is trivial or cyclotomic. We then define Wp(ρ) by the following rule:

V~a,~b ∈ Wp(ρ) if and only if cρ ∈ Lα for some α = (V~a,~b, J) ∈ W ′(χ1, χ2).

Before defining the subspace Lα, we recall some facts about crystalline represen-
tations. Recall that a character ψ : D → Q

×
` is crystalline if and only the filtered

φ-module Dcrys(ψ) = (Bcrys ⊗Q`
Q`(ψ))D is free of rank one over Kp ⊗Q`

Q`.
For each τ ∈ S, let eτ : Kp ⊗Q`

Q` → Q` denote the projection defined by
a⊗b 7→ τ̃(a)b where τ̃ is the embedding Kp → Q` reducing to τ , and let eτDcrys(ψ)
denote the filtered Q`-vector space Dcrys(ψ)⊗K⊗Q`,τ Q`.

Lemma 3.8. Suppose that ψ is a crystalline character and for each τ ∈ S, mτ is
the integer such that gr−mτ eτDcrys(ψ) 6= 0. Then ψ|I =

∏
τ∈S ωmτ

τ .

Proof. Crystalline characters satisfying the first condition correspond to (weakly)
admissible filtered φ-modules with the specified filtration. These exist, and any two
such differ by an unramified twist. Taking tensor products, the lemma reduces to
the case where mτ = 1 or 0 according to whether or not τ = τ0. The result in this
case follows for example from Theorems 5.3 and 8.4 of [25]. ¤

Recall that α = (V~a,~b, J) ∈ W ′(χ1, χ2) if and only if

χ1|IKp
=

∏

τ∈S

ωaτ
τ

∏

τ∈J

ωbτ
τ , χ2|IKp

=
∏

τ∈S

ωaτ
τ

∏

τ 6∈J

ωbτ
τ .

Lemma 3.9. Suppose that α = (V~a,~b, J) ∈ W ′(χ1, χ2). Let mτ,α = bτ or −bτ

according to whether or not τ ∈ J . Then there is a unique lift χα of χ1χ
−1
2 with

the following properties:
• χα is crystalline with gr−mτ eτDcrys(χα) 6= 0 for each τ ∈ S;
• if g ∈ Dab corresponds via local class field theory to `, then χα(g) is the

Teichmüller lift of χ1χ
−1
2 (g).

Proof. Let ψ be a character satisfying the first condition. The preceding lemma
shows that the reduction of ψ is an unramified twist of χ1χ

−1
2 . Let χα = δψ, where

δ(g) = χ̃1χ̃
−1
2 (g)ψ−1(g) (and the tildes denote Teichmüller lifts). ¤

Recall that if ψ : GKp → Q
×
` is a crystalline representation, then Bloch and Kato

define a subspace H1
f (Kp,Q`(ψ)) corresponding to those extensions of topological

Q`GKp-modules
0 → Q`(ψ) → E → Q` → 0

which are crystalline. By Corollary 3.8.4 of [5] for example, we have

dim H1
f (Kp,Q`(ψ)) = dimH0(Kp,Q`(ψ)) + dim Dcrys(ψ)− dimFil0Dcrys(ψ)
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where the dimensions are over Q`. Applying this for ψ = χα for α = (V~a,~b, J) ∈
W ′(χ1, χ2), we see that dimH1

f (Kp,Q`(χα)) = |J |. We then define H1
f (Kp,Z`(χα))

as the preimage of H1
f (Kp,Q`(χα)) under the natural map

H1(Kp,Z`(χα)) → H1(Kp,Q`(χα))

and L′α as the image of H1
f (Kp,Z`(χα)) under the natural map

H1(Kp,Z`(χα)) → H1(Kp,F`(χ1χ
−1
2 )).

We then let Lα = L′α except in two cases:

• if χ1χ
−1
2 is the cyclotomic character, ~b = (`, . . . , `) and J = S, then we let

Lα = H1(Kp,F`(χ1χ
−1
2 ));

• if χ1χ
−1
2 is the trivial character and J 6= S, then we let Lα = L′α + Lur,

where Lur is the one-dimensional space of unramified classes in H1(Kp,F`).

Lemma 3.10. If α = (V~a,~b, J) ∈ W ′(χ1, χ2), then dim Lα = |J | except in the
following cases:

(1) if χ1χ
−1
2 is cyclotomic, ~b = (`, . . . , `), J = S and ` > 2, then dim Lα =

|J |+ 1;
(2) if χ1χ

−1
2 is trivial and ` > 2, then dim Lα = |J |+ 1 or |J |+ 2 according to

whether or not Lur ⊂ L′α;
(3) if χ1χ

−1
2 is trivial (or equivalently, cyclotomic) and ` = 2, then dim Lα =

|J | + 1 unless either Lur 6⊂ L′α or ~b = (`, . . . , `) and J = S, in which case
dim Lα = |J |+ 2.

Proof. Note first that H1
f (Kp,Z`(χα)) contains H1(Kp,Z`(χα))tor and that the

quotient is free of rank |J | = dim H1
f (Kp,Q`(χα)). Therefore the natural map

H1
f (Kp,Z`(χα))⊗Z`

F` → H1(Kp,Z`(χα))⊗Z`
F` → H1(Kp,F`(χ1χ

−1
2 ))

is injective and its image L′α has dimension |J |, unless χ1χ
−1
2 is trivial, in which

case the dimension is |J |+ 1. The lemma is now immediate from the definition of
Lα and, in the cyclotomic J = S case, the local Euler characteristic formula. ¤

If ρ|GKp
∼

(
χ1 ∗
0 χ2

)
and cρ is the corresponding class in H1(Kp,F`(χ1χ

−1
2 )),

we now define

(3) Wp(ρ) = {V | cρ ∈ Lα for some α = (V, J) ∈ W ′(χ1, χ2) }.
Note that if ρ|GKp

∼ χ1⊕χ2, or equivalently cρ = 0, then Wp(ρ) = π1(W ′(χ1, χ2))
is independent of the choice of ordering of χ1 and χ2. Note also in this case that
|Wp(ρ)| has size approximately 2f , as in the irreducible case (1).

(We remark that it is shown in [17] that in the cases where ρ|GKp
is semisimple,

the set Wp(ρ) is related to the set of Jordan-Hölder constituents of the reduction
of a corresponding irreducible characteristic zero representation of GL2(k).)

3.3. Basic properties of the definition. The set Wp(ρ) was defined in terms of
the restriction of ρ to GKp . We now check that it is in fact non-empty and depends
only on the restriction to inertia.

Proposition 3.11. If ρ : GK → GL2(F`) is continuous, irreducible and totally
odd, then Wp(ρ) is non-empty and depends only on ρ|IKp

.
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Proof. We first prove that Wp(ρ) 6= ∅. If ρ|GKp
is irreducible, then it is induced

from a character ξ, and Propositions 3.1 and 3.2 show that W ′(ξ) is non-empty,
and hence so is Wp(ρ) (note that if `f = 2, then n is not divisible by 3). If

ρ|GKp
is reducible, then it is of the form

(
χ1 ∗
0 χ2

)
, and we showed that the

projection map W ′(χ1, χ2) → {J ⊂ S} is surjective. In particular, there is an
element α = (V~a,~b, S) ∈ W ′(χ1, χ2). Moreover if χ1χ

−1
2 is cyclotomic, we may

choose ~b = (`, . . . , `), so that in all cases Lα = H1(Kp,F`(χ1χ
−1
2 )) by Lemma 3.10

and the local Euler characteristic formula. It follows that cρ ∈ Lα and V~a,~b ∈ Wp(ρ).
For the dependence only on inertia, first note that the irreducibility of ρ|GKp

is
determined by ρ|IKp

. In the case that ρ|GKp
is irreducible, Wp(ρ) is determined by

W ′(ξ), which depends only on ξ|IKp
, which in turn depends only on ρ|IKp

.
Suppose now that ρ|GKp

is reducible and ρ′ : GK → GL2(F`) is such that

ρ|IKp
∼ ρ′|IKp

. Changing bases, we may assume ρ|GKp
=

(
χ1 ∗
0 χ2

)
and ρ|IKp

=

ρ′|IKp
. Note that the function GKp/IKp → GL2(F`) defined by g 7→ ρ′(g)ρ(g)−1

takes values in Z(ρ(IKp)). We divide the proof into cases according to the possible
centralisers.

Suppose first that χ1χ
−1
2 is ramified and cρ has non-trivial restriction to IKp . In

this case ρ|IKp
is indecomposable and has centraliser consisting only of the scalar

matrices. It follows that ρ′ = ψρ for some unramified character ψ : GKp → F
×
` .

Since W ′(χ1, χ2) depends only on the restriction of χ1 and χ2 to IKp , we have
W ′(ψχ1, ψχ2) = W ′(χ1, χ2). Moreover the subspaces Lα of H1(Kp,F`(χ1χ

−1
2 )) do

not change if ρ is replaced by an unramified twist, nor does the class cρ. It follows
that Wp(ρ′) = Wp(ρ).

Next suppose that χ1χ
−1
2 is ramified and cρ has trivial restriction to IKp . Then

in fact cρ = 0, so we may assume ρ|GKp
=

(
χ1 0
0 χ2

)
. In this case the cen-

traliser of ρ(IKp) consists of the diagonal matrices. It follows that ρ′|GKp
=(

ψ1χ1 0
0 ψ2χ2

)
for some unramified characters ψ1 and ψ2. Moreover we have

cρ′ = 0 and W ′(ψ1χ1, ψ2χ2) = W ′(χ1, χ2), so Wp(ρ′) = Wp(ρ).
Next suppose that χ1χ

−1
2 is unramified and cρ has non-trivial restriction to IKp .

In this case we have

Z(ρ(IKp)) =
{ (

x xy
0 x

) ∣∣∣∣ x ∈ F
×
` , y ∈ F`

}
,

so if g ∈ GKp , then

ρ′(g) =
(

1 µ(g)
0 1

)
ψ(g)ρ(g)

for some unramified character ψ and cocycle µ : GKp/IKp → F`(χ1χ
−1
2 ). In partic-

ular, ρ′ ∼
(

χ′1 ∗
0 χ′2

)
with χ′1(χ

′
2)
−1 = χ1χ

−1
2 . Moreover if χ1 6= χ2, then cρ′ = cρ

in H1(Kp,F`(χ1χ
−1
2 )), and if χ1 = χ2, then cρ′ − cρ ∈ Lur. Since the spaces Lα are

the same for ρ and ρ′ and contain Lur if χ1 = χ2, we conclude that Wp(ρ′) = Wp(ρ).
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Finally suppose that χ1χ
−1
2 is unramified and cρ has trivial restriction to IKp ,

so

ρ′(g) = ρ(g) =
(

χ1(g) 0
0 χ1(g)

)

for g ∈ IKp . Note that cρ = 0 unless χ1 = χ2, in which case cρ ∈ Lur, and similarly
for cρ′ . It follows that Wp(ρ′) = π1(W ′(χ′1, χ

′
2)) = π1(W ′(χ1, χ2)) = Wp(ρ). ¤

We are now ready to state the weight conjecture. Recall that W (ρ) is defined
as the set of representations of

∏
p|` GL2(kp) of the form ⊗F`

Vp with each Vp ∈
Wp(ρ). By the preceding proposition W (ρ) is non-empty and depends only on the
restrictions of ρ to inertia groups at primes over `.

Conjecture 3.12. If ρ : GK → GL2(F`) is modular, then

W (ρ) = {V | ρ is modular of weight V }.
We now check compatibility of the conjectural weight set with twists and deter-

minants.

Proposition 3.13. Suppose that ρ : GK → GL2(F`) is continuous, irreducible and
totally odd.

(1) Let χ : GK → F
×
` be such that χ|IKp

=
∏

τ∈Sp
ωcτ

τ for each p|`. Then
V ∈ W (ρ) if and only V ⊗ Vχ ∈ W (χρ), where

Vχ = ⊗p|` ⊗τ∈Sp det cτ k2
p ⊗τ F`.

(2) If V ∈ W (ρ) and V has central character ⊗p|`
∏

τ∈Sp
τ cτ , then det ρ|IKp

=∏
τ∈Sp

ωcτ+1
τ for each p|`.

Proof. To prove the first assertion it suffices to show that V ∈ Wp(ρ) if and only
if V ⊗ Vχp ∈ Wp(χρ) where χp = χ|GKp

and Vχp = ⊗τ∈Sp det cτ k2
p ⊗τ F`. If

ρ|GKp
∼ IndD

D′ξ is irreducible, then (V, J) ∈ W ′(ξ) if and only (V ⊗ Vχp , J) ∈
W ′(ξχp), yielding the assertion in this case. If ρ|GKp

∼
(

χ1 ∗
0 χ2

)
is reducible,

then α = (V, J) ∈ W ′(χ1, χ2) if and only α′ = (V ⊗ Vχp , J) ∈ W ′(χ1χp, χ2χp).
Moreover, since V~a,~b⊗Vχp is of the form V~a′,~b, we see that χα = χα′ , so Lα = L′α ⊂
H1(Kp,F`(χ1χ

−1
2 )). Since also cρ = cχρ, we get the assertion in this case as well.

To prove the second assertion, we can again work locally at primes p|`. Writing
V = ⊗p|`Vp, we have Vp ∈ Wp(ρ) for each p|`. If Vp = V~a,~b, this gives det ρ|IKp

=∏
τ∈Sp

ω2aτ+bτ
τ . Since V~a,~b has central character

∏
τ∈Sp

τ2aτ+bτ−1, we have

fp−1∑

i=0

cτi`
i ≡

fp−1∑

i=0

(2aτi + bτi − 1)`i mod (`fp − 1).

Adding
∑fp−1

i=0 `i to each side of the congruence, we deduce that
∏

τ∈Sp
ωcτ+1

τ =∏
τ∈Sp

ω2aτ+bτ
τ . ¤

Combining the first part of the proposition with Corollary 2.11(b), we deduce
the following:



28 KEVIN BUZZARD, FRED DIAMOND, AND FRAZER JARVIS

Corollary 3.14. Suppose that ρ : GK → GL2(F`) is continuous, irreducible and
totally odd and χ : GK → F

×
` is a character. Then Conjecture 3.12 holds for ρ if

and only if it holds for χρ.

In the case K = Q, Conjecture 3.12 follows from known results on Serre’s Con-
jecture (cf. [41], [2]).

Theorem 3.15. Conjecture 3.12 holds if K = Q.

Proof. Replacing ρ by a twist, we can assume ρ|I`
has the form

(
ωb

2 0
0 ω`b

2

)
or

(
ωb ∗
0 1

)
for some b with 1 ≤ b ≤ ` − 1. In the second case we write ρ|GQ`

∼
(

χ1 ∗
0 χ2

)
. We shall also use ω to denote the mod ` cyclotomic character on GQ

or GQ`
.

In the first case we find that W (ρ) = {V0,b, Vb−1,`+1−b}. In the second case, we
have the following possibilities:

W ′(χ1, χ2) =





{(V0,b, S), (Vb,`−1−b, ∅)}, if 1 < b < `− 2,
{(V0,`−1, S), (V0,`−1, ∅)}, if b = `− 1 and ` > 2,
{(V0,`, S), (V0,1, S), (V1,`−2, ∅)}, if b = 1 and ` > 3,
{(V0,`−2, S), (V`−2,`, ∅), (V`−2,1, ∅)}, if b = `− 2 and ` > 3,
{(V0,`, S), (V0,1, S), (V1,`, ∅), (V1,1, ∅)}, if b = 1 and ` ≤ 3.

Moreover, dimension considerations show that L(V,J) = H1(GQ`
,F(χ1χ

−1
2 )) when-

ever J = S, unless χ1χ
−1
2 = ω and V = V(0,1), in which case the construction of

L(V,J) shows that the corresponding extensions arise from finite flat group schemes
over Z`, hence are peu ramifiées in the sense of Serre [56]. Considering dimensions
in this case then gives that L(V,J) consists precisely of the classes which are peu
ramifiées. Note also that L(V,J) = 0 whenever J = ∅ unless χ1χ

−1
2 is trivial, in

which case we do not need an explicit description of L(V,J). This gives

W (ρ) =





{V0,b}, if 1 < b < `− 1 and ρ|GQ`
is non-split,

{V0,b, Vb,`−1−b}, if 1 < b < `− 2 and ρ|GQ`
is split,

{V0,`−2, V`−2,`, V`−2,1}, if b = `− 2, ` > 3 and ρ|GQ`
is split,

{V0,`−1}, if b = `− 1 and ` > 2,
{V0,`}, if b = 1, χ1χ

−1
2 = ω and ρ|GQ`

is très ramifiée,
{V0,`, V0,1, V1,`−2}, if b = 1, ` > 3 and ρ|GQ`

is split,
{V0,3, V0,1, V1,3, V1,1}, if b = 1, ` = 3 and ρ|GQ`

is split,
{V0,`, V0,1}, otherwise.

Propositions 2.5 and Corollary 2.11(b) show that ρ is modular of weight1 b + 1
and level prime to ` if and only if ωa+bρ is modular of weight Va,b. If ρ is modular
of weight 2 and level prime to `, then ωρ|GQ`

arises from a finite flat group scheme
over Z`, so it follows from results of Deligne and Fontaine ([20], Theorems 2.5, 2.6)
and the explicit description of W (ρ) above that if ρ is modular of weight V , then
V ∈ W (ρ).

1Most of the literature on Serre’s Conjecture in the classical case uses arithmetic conventions,
so for the purpose of this proof, we view ρ as “modular of weight k” if ρ ∼ ρπ for some cuspidal

automorphic π with π∞ ∼= Dk,k in the notation of §2 and [10].
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To show that if V ∈ W (ρ), then ρ is modular of weight V , we combine the
following four results. The first of these is a standard consequence of multiplication
by the Hasse invariant (or Eisenstein series) of weight `− 1.

Lemma 3.16. If ρ is modular of weight 2 and level prime to `, then ρ is modular
of weight ` + 1 and level prime to `.

The theorem in the irreducible case is then a consequence of the following result
of Edixhoven; see the second paragraph of [20, 4.5].

Lemma 3.17. Suppose that ρ is modular of weight b + 1 and level prime to ` with
2 ≤ b ≤ `. If ρ|GQ`

is irreducible, then ω1−bρ is modular of weight ` + 2 − b and
level prime to `.

To treat the reducible case, we first apply Mazur’s Principle [20, 2.8].

Theorem 3.18. Suppose that ρ is modular of weight ` + 1 and level prime to `.
If ρ is not modular of weight 2 and level prime to `, then ρ|GQ`

is a très ramifiée

representation of the form
(

ωχ2 ∗
0 χ2

)
for some unramified character χ2.

The theorem is then a consequence of the companion forms theorem, proved by
Gross [34] subject to unchecked compatibilities, then by Coleman and Voloch [11],
but under slightly different hypotheses than we need. Yet another proof was given
by Faltings and Jordan [24], whose version we cite:

Theorem 3.19. Suppose that ρ is modular of weight b + 1 and level prime to `
with 1 ≤ b ≤ `− 2. If ρ|GQ`

is reducible and split, then ω−bρ is modular of weight
`− b and level prime to `.

Theorem 3.15 now follows. ¤

We end by remarking that Edixhoven’s refinement of Serre’s conjecture includes
the statement that if ρ is unramified at ` then it should come from a mod ` modular
form of weight 1. This refinement is not implied by our conjecture.

4. Mod ` Langlands correspondences

As Serre himself remarks in [56], his conjecture can be viewed as part of a “mod `
Langlands philosophy.” Indeed the weak conjecture can be viewed as asserting
the existence of a global mod ` Langlands correspondence for GL2 /Q, and the
refinement can be viewed as a local-global compatibility statement. This was made
precise by Emerton in [22] as follows. Consider the representation

H = lim
→
U

H1
ét(YU,K ,F`)

of GQ × GL2(Af ). The weak form of Serre’s conjecture is the statement that if
ρ : GQ → GL2(F`) is continuous, odd and irreducible, then

π(ρ) := HomF`[GQ](ρ,H)

is non-zero. Under some technical hypotheses on ρ|GQ`
, Emerton shows that π(ρ)

factors as a restricted tensor product of representations πp where πp is a represen-
tation of GL2(Qp) determined by ρ|GQp

. The “level part” of Serre’s refinement can
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then be recovered from the fact that if p 6= ` and ρ|GQp
has Artin conductor pcp ,

then π
U1(p

cp )
p 6= 0, and the “weight part” from the fact that

HomGL2(Z`)(det 1−k ⊗ Symmk−2 F
2

` , π`) 6= 0

where k = k(ρ) ≥ 2 is the weight of ρ|GQ`
as defined by Serre in [56]. In this section

we formulate a conjectural extension of Emerton’s refinement to our setting, namely
that of mod ` representations arising from a quaternion algebra D over a totally
real field K.

Suppose now that
ρ : GK → GL2(F`)

is continuous, totally odd and irreducible. We shall associate to ρ a smooth rep-
resentation πD(ρ) of (D ⊗ Ẑ)× over F` and give a conjectural description for it as
a product of local factors. Thus for each prime p of K we would like to associate
to ρ a smooth admissible representation of D×

p defined over F`, ideally depending
only on ρ|GKp

. We are able to achieve this for primes p not dividing `; indeed this
was already done by Emerton if D is split at p and the main new ingredient of
this section is to treat the case where Dp is a quaternion algebra. For p|`, we are
not yet able to give a conjectural description of the local factor, but the weight
conjecture formulated in the preceding section can be interpreted as a description
of the Jordan-Hölder factors of its socle under a maximal compact subgroup of D×

p .
(We are grateful to Breuil and Emerton for this observation.)

We begin by recalling Emerton’s formulation of a mod ` local Langlands corre-
spondence for GL2 over Kp for p not dividing `; see Theorem 1.2 of [23]. Emerton’s
construction is a modification of one provided by Vignéras in [63], on whose re-
sults it relies, a key difference being that [23] involves reducible representations of
GL2(Kp) in order to prove local-global compatibility.

Fix for now a prime p not dividing ` and let q = N(p) = #(OK/p). For
a continuous representation ρ̃ : GKp → GL2(Q`), we let π(ρ̃) denote its local
Langlands correspondent as modified in Section 7.1 of [23]. In particular, π(ρ̃)
is the usual irreducible admissible Q`-representation of GL2(Kp) provided by the
local Langlands correspondence, unless ρ̃ is the sum of two characters whose ratio
is cyclotomic in which case π(ρ̃) is a generic representation of length two.

Theorem 4.1. (Emerton) There is a map ρ 7→ π(ρ) from the set of isomorphism
classes of continuous representations GKp → GL2(F`) to the set of isomorphism
classes of finite length smooth admissible F`-representations of GL2(Kp), uniquely
determined by the following properties:

(1) π(ρ) has no finite-dimensional subrepresentations.
(2) If g ∈ AutF`, then π(ρg) = π(ρ)g.
(3) If ρ̃ : GKp → GL2(Q`) is a continuous lift of ρ, then there is a GL2(Kp)-

equivariant Z`-lattice in π(ρ̃) whose reduction admits a GL2(Kp)-equivariant
embedding into π(ρ). Moreover, this lattice is uniquely determined up to
multiplication by an element of Q

×
` .

(4) There exists a lifting ρ̃ of ρ for which the embedding of (3) is an isomor-
phism.

If D is split at p, we let πDp(ρ) denote the representation of D×
p
∼= GL2(Kp)

given by the theorem.
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We would like an analogue of the theorem which associates to ρ a representation
of D×

p when Dp is a non-split quaternion algebra over Kp. Again our construction
is a modification of one already provided by Vignéras (this time in [62]) on whose
results we rely. Since the irreducible smooth admissible F`-representations of D×

p

are finite-dimensional, one might expect a result like Theorem 4.1 but without
condition (1). However results of Ribet [52] show this naive generalisation is false,
and there are further complications when ` = 2. On the other hand we can give a
more explicit description of the desired representation πDp(ρ).

Recall that the (local) Jacquet-Langlands correspondence establishes a bijec-
tion between isomorphism classes of irreducible admissible square-integrable Q`-
representations of GL2(Kp) and irreducible admissible Q`-representations of D×

p .
If ρ̃ : GKp → GL2(Q`) is a continuous representation, then π(ρ̃) is square-integrable
if and only if ρ̃ is either irreducible or isomorphic to a twist of the non-split represen-
tation of the form

(
1 ∗
0 ω−1

)
where ω is the `-adic cyclotomic character, and then we

let πDp(ρ̃) the representation of D×
p corresponding to π(ρ̃) via Jacquet-Langlands.

Now consider again a continuous representation ρ : GKp → GL2(F`). It is
straightforward to check that there exist continuous representations ρ̃ : GKp →
GL2(Q`) containing GKp-stable lattices whose reduction is ρ. Moreover, if ρ̃ is
irreducible, then so is ρ except in the following case: if q ≡ −1 mod `, L is the
quadratic unramified extension of Kp and ρ̃ ∼ χ⊗ Ind

GKp

GL
ξ for some characters χ

of GKp and ξ of GL such that ξ is different from its Gal(L/Kp)-conjugate and has
`-power order, then ρ has semi-simplification isomorphic to χ⊕χω−1 where ω is the
mod ` cyclotomic character. (Note that if q ≡ −1 mod `, then ω is the quadratic
unramified character of GKp , unless ` = 2 in which case ω = 1.)

For representations of D×
p we have the following result of Vignéras (Proposi-

tions 9 and 11 and Corollary 12 of [62]):

Proposition 4.2. (Vignéras) Suppose that ρ : GKp → GL2(F`) is continuous and
irreducible. If ρ̃ : GKp → GL2(Q`) is a lift of ρ, then the reduction of πDp(ρ̃) is
irreducible and depends only on ρ.

If ρ : GKp → GL2(F`) is irreducible, we define πDp(ρ) to be the reduction of
πDp(ρ̃) for any lift ρ̃ of ρ, well-defined by the proposition.

Suppose now that ρ is reducible. If ρ is not a twist of a representation of the
form

(
1 ∗
0 ω−1

)
(where ω is the mod ` cyclotomic character), then ρ has no lifts ρ̃

such that π(ρ̃) is square-integrable, and we define πDp(ρ) = 0.
Suppose now that ρ ∼ ( χ ∗

0 χω−1

)
for some character χ : GKp → F

×
` (i.e., ρ is

any extension of χω−1 by χ). If q 6≡ −1 mod `, then the only lifts ρ̃ of ρ for which
π(ρ̃) is square-integrable are non-split representations of the form

( χ̃ ∗
0 χ̃ω−1

)
where

χ̃ : GKp → O×Kp
lifts χ. In this case πDp(ρ̃) = χ̃ ◦ det where det : D×

p → K×
p is

the reduced norm (using χ̃ and χ also to denote the characters of K×
p to which

they correspond via class field theory). We then define πDp(ρ) to be χ ◦det, unless
q ≡ 1 mod ` and ρ is the split representation χ⊕ χ in which case we define πDp(ρ)
to be χ ◦ det⊕χ ◦ det (note that ω is trivial).

Remark 4.3. Note that the reduction of πDp(ρ̃) is χ ◦ det, which then coincides
with πDp(ρ) unless we are in the exceptional case where q ≡ 1 mod ` and ρ is scalar.
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Work of Ribet [52] and Yang [66] suggests that in this exceptional case πDp(ρ) will
have dimension greater than 1; in particular the analogue of Theorem 4.1(4) fails.

Suppose now that ρ ∼ ( χ ∗
0 χω−1

)
for some character χ : GKp → F

×
` and that

q ≡ −1 mod `. Let cρ denote the extension class associated to ρ in

Ext1
F`[GKp ]

(χω−1, χ) ∼= H1(GKp ,F`(ω)).

Note that this space is 1-dimensional unless ` = 2 in which case it is 2-dimensional.
Recall that such ρ have irreducible lifts ρ̃ which are twists of tamely ramified rep-
resentations induced from GL where L is the unramified quadratic extension of
Kp. For such ρ̃, πDp(ρ̃) is a two-dimensional representation of D×

p whose reduction
(which depends on a choice of lattice) has semi-simplification χ ◦det⊕(χω−1) ◦det
(see [62]). We will define πDp(ρ) as a certain extension of (χω−1) ◦ det by χ ◦ det
depending on cρ. To this end we will first compute

Ext1
F`[D

×
p ]

((χω−1) ◦ det, χ ◦ det) ∼= H1(D×
p ,F`(ω ◦ det)).

Although a unified treatment is possible (see Remark 4.4), it is simpler to consider
separately the cases ` > 2 and ` = 2.

Suppose first that ` > 2. Let ODp denote the maximal order in Dp and Π a
uniformizer, so valKp(detΠ) = 1 and ODp/ΠODp

∼= Fq2 . Letting Γ = D×
p /(1 +

ΠODp), we have an exact sequence

1 → F×q2 → Γ → Z → 0

where the map Γ → Z is val◦det and n ∈ Z acts on F×q2 by x 7→ xqn

. Note that F×q2

acts trivially on F`(ω ◦ det) and the induced action of n ∈ Z is via the character
µ(n) = (−1)n = qn. Since 1 + ΠODp is pro-p, we have that

H1(D×
p ,F`(ω ◦ det)) ∼= H1(Γ,F`(ω ◦ det)).

Since H1(Z,F`(µ)) = H2(Z,F`(µ)) = 0, we have that

H1(Γ,F`(ω ◦ det)) = HomZ(F×q2 ,F`(µ))

is one-dimensional. Hence there is a unique isomorphism class of F`-representations
of D×

p which are non-trivial extensions of (χω−1)◦det by χ◦det. We define πDp(ρ)
to be the extension which is trivial or not according to whether cρ is trivial or not.

Finally consider the case ` = 2. Then ω is trivial and

H1(D×
p ,F2) = Hom(D×

p /(D×
p )2,F2),

and one checks easily that det induces an isomorphism

D×
p /(D×

p )2 ∼−→K×
p /(K×

p )2.

On the other hand local class field theory yields an isomorphism

H1(GKp ,F2) ∼= Hom(K×
p /(K×

p )2,F2).

Putting these isomorphisms together yields

H1(GKp ,F2)
∼−→H1(D×

p ,F2),

and we define πDp(ρ) to be the extension obtained from the image of cρ.
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Remark 4.4. To give a unified treatment for the cases ` = 2 and ` > 2 when
q ≡ −1 mod ` and ρ as above, embed the unramified quadratic extension L of Kp

in Dp and let N denote the normaliser of the image of L× in D×
p . One can then

check that restriction induces an isomorphism

H1(Dp,F`(ω ◦ det)) ∼= H1(N,F`(µ))

where µ(x) = ±1 according to whether x ∈ L×. On the other hand one finds that
N is isomorphic by local class field theory to the image of the Weil group of Kp in
Gal(Lab/Kp) and that the inflation and restriction maps induce isomorphisms

H1(GKp ,F`(ω)) ∼= H1(Gal(Lab/Kp),F`(ω)) ∼= H1(N,F`(µ)).

Remark 4.5. It is straightforward to check that if q ≡ −1 mod ` and ξ is a char-
acter of GL of `-power order, then every representation ρ with semisimplification
1⊕ ω is isomorphic to the reduction of a GKp -stable lattice in Ind

GKp

GL
ξ. It follows

that if ` = 2 (and in fact whenever q ≡ 1 mod ` for any `), then every represen-
tation with scalar semisimplification has the same set of lifts ρ̃ such that π(ρ̃) is
square-integrable, so πDp(ρ) is not characterised by the set of πDp(ρ̃).

We now return to the global setting of a totally odd, continuous, irreducible

ρ : GK → GL2(F`)

and construct the F`-representation of D×
f = (D ⊗ Ẑ)× whose local factors should

be the πDp(ρ). We first consider the case of a totally definite quaternion algebra
D over K. Fix a maximal order OD in D and isomorphisms OD,p

∼= M2(OK,p) for
each prime p of K at which D is split.

For each open compact subgroup U of D×
f we define

SD(U) = { f : D×\D×
f /U → F` }.

The obvious projection maps for V ⊂ U induce inclusions SD(U) → SD(V ) and we
define SD as the direct limit of the SD(U). Thus SD can equivalently be defined
as the set of smooth functions f : D×\D×

f → F`. Note that this F`-vector space
admits a natural left action of D×

f by right translation, and SD(U) = (SD)U .
Moreover for any g ∈ D×

f and open compact U, V ⊂ D×
f we have the double coset

operator [UgV ] : SD(V ) → SD(U) defined in the usual way. In particular, for each
prime p at which D is split and GL2(OK,p) ⊂ U , we have the endomorphisms

Tp =
[
U

(
$p 0
0 1

)
U

]
and Sp =

[
U

( $p 0
0 $p

)
U

]

of SD(U), where $p is any uniformizer of OK,p. If Σ is a finite set of primes of K
containing all those such that:

• D is ramified at p,
• GL2(OK,p) 6⊂ U ,
• ρ is ramified at p, or
• p divides `,

then we let TΣ(U) denote the commutative F`-subalgebra of EndF`
(SD(U)) gener-

ated by the Tp for p 6∈ Σ. We let mΣ
ρ = mΣ

ρ (U) denote the ideal of TΣ(U) generated
by the operators

Tp − tr(ρ(Frobp)) and SpN(p)− det(ρ(Frobp))
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for all p 6∈ Σ. We let

SD(U)[mΣ
ρ ] = { f ∈ SD(U) | Tf = 0 for all T ∈ mΣ

ρ }.
If ρ = ρπ for some (necessarily cuspidal) automorphic representation π of D× with
weight (~2, 0) and πU 6= 0, then mΣ

ρ is a maximal ideal of TΣ(U) and SD(U)[mΣ
ρ ] 6= 0;

otherwise mΣ
ρ = TΣ(U) and SD(U)[mΣ

ρ ] = 0.

Lemma 4.6. Suppose that D, U , ρ and Σ are as above. Then
a) SD(U)[mΣ

ρ ] is independent of Σ (so we will denote it SD(U)[mρ]);
b) if g ∈ D×

f and V is an open compact subgroup of D×
f such that V ⊂ gUg−1, then

g sends SD(U)[mρ] to SD(V )[mρ].

Proof. a) We may assume Σ′ = Σ ∪ {p} for some p 6∈ Σ and that mΣ′
ρ 6= TΣ′(U).

Since ρ is irreducible, a standard argument using the representations ρπ lifting ρ
gives a representation

ρ′ : GK → GL2(TΣ′(U)mΣ′
ρ

)

lifting ρ such that

Tp = tr(ρ′(Frobp)) and N(p)Sp = det(ρ′(Frobp))

as endomorphisms of SD(U)mΣ′
ρ

. It follows that SD(U)[mΣ
ρ ] = SD(U)[mΣ′

ρ ].
b) Choosing Σ sufficiently large that GL2(OK,p) ⊂ V and gp ∈ GL2(OK,p) for

all p 6∈ Σ, we see that g commutes with Tp for all p 6∈ Σ. ¤

We can now consider the direct limit over U of the spaces SD(U)[mρ]; by the
lemma, this makes sense and yields a representation SD[mρ] of D×

f .

Conjecture 4.7. Suppose that K is a totally real field,

ρ : GK → GL2(F`)

is a continuous, irreducible and totally odd representation, and D is a totally definite
quaternion algebra over K. Then the F`-representation SD[mρ] of D×

f is isomorphic
to a restricted tensor product ⊗′pπp where πp is a smooth admissible representation
of D×

p such that
• if p does not divide ` then πp

∼= πDp(ρ|GKp
);

• if p|` then πp 6= 0; moreover if K and D are unramified at p, and σ is an
irreducible F`-representation of GL2(OK,p), then HomGL2(OK,p)(σ, πp) 6= 0
if and only if σ ∈ Wp(ρ∨|GKp

).

Remark 4.8. In the case K = Q and D = M2(Q) and ρ|GQ`
is not a twist of a

representation of the form
(

1 ∗
0 ω

)
, then Emerton predicts the precise form for π` in

[22] as well and goes on to prove the conjecture under technical hypotheses. It is
reasonable to expect that πp is of the form predicted there whenever Dp

∼= M2(Q`)
and ρ|GKp

is as above.
Under the hypotheses that Kp is an unramified extension of Q` and D is split at

p, the relation with Wp can be viewed as a description of the GL2(OK,p)-socle of
πp (which in most cases is expected to be multiplicity-free). In many cases, Breuil
and Paskunas [7] construct infinitely many (isomorphism classes of) representations
with the desired socle, raising the question of whether one should still expect πp to
be completely determined by ρ|GKp

.
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Some work has also been done towards defining a conjectural set of weights Wp

when Fp is ramified extension of Q` and Dp is split. In particular, Schein [55] gives
a definition of Wp when ρ|GKp

is tamely ramified, and Gee [33] gives a more general
but less explicit definition than ours.

Suppose now that D is split at exactly one infinite place. We exclude the case
D = M2(Q) already considered by Emerton. We now define SD(U) = H1(YU,K̄ ,F`)
and SD = lim SD(U), the limit taken over all open compact U ⊂ D×

f with respect to
the maps on cohomology induced by the natural projections YV → YU for U ⊂ V .
If V ⊂ gUg−1, then we have a K-morphism YV → YU corresponding to right
multiplication by g on complex points, inducing a homomorphism SD(U) → SD(V )
which we also denote by g, making SD a GK ×D×

f -module. However the natural
map SD(U) → (SD)U is not necessarily an isomorphism.

For g ∈ D×
f , and U ,V open compact subgroups of D×

f , we have the double coset
operator [V gU ] : SD(U) → SD(V ) defined as the composite SD(U) → SD(V ′) →
SD(V ) where V ′ = V ∩ gUg−1, the first map is defined by g, and the second is the
trace morphism times the integer [V : V ′]/ deg(YV ′/YV ). We can thus define Hecke
operators Tp for p 6∈ Σ, algebras TΣ(U) ⊂ EndF`

(SD(U)), ideals mΣ
ρ and subspaces

SD(U)[mΣ
ρ ] ⊂ SD(U), just as in the case of totally definite D. The analogue

of Lemma 4.6 is proved in exactly the same way, now yielding a representation
SD[mρ] of GK ×D×

f .

Conjecture 4.9. Suppose that K is a totally real field,

ρ : GK → GL2(F`)

is a continuous, irreducible and totally odd representation, and D is a quaternion
algebra over K split at exactly one real place. Then the F`-representation SD[mρ] of
GK×D×

f is isomorphic to ρ⊗(⊗′pπp

)
where πp is a smooth admissible representation

of D×
p such that
• if p does not divide ` then πp

∼= πDp(ρ|GKp
);

• if p|` then πp 6= 0; moreover if K and D are unramified at p, and σ is an
irreducible F`-representation of GL2(OK,p), then HomGL2(OK,p)(σ, πp) 6= 0
if and only if σ ∈ Wp(ρ∨|GKp

).

By the following lemma, Conjecture 4.9 could be reformulated as saying that the
representation HomF`[GK ](ρ, SD) of D×

f has the prescribed form, as in [22].

Lemma 4.10. The evaluation map ρ⊗F`
HomF`[GK ](ρ, SD) → SD induces a GK×

D×
f -linear isomorphism:

ρ⊗F`
HomF`[GK ](ρ, SD) ∼−→SD[mρ].

Proof. It suffices to prove the lemma with SD replaced by SD(U) and take direct
limits. Since ρ is irreducible, the evaluation map

ρ⊗F`
HomF`[GK ](ρ, SD(U)) → SD(U)

is injective by Schur’s Lemma. Using the Eichler-Shimura relations on YU (in
particular, that Frob2

p +Tp Frobp +N(p)Sp = 0 on H1(YU,K ,F`) for all p 6∈ Σ), one
shows as in the proof of Prop. 6.1.7 of [23] that the image lies in SD(U)[mρ]. Finally,
the main result of [6] shows that SD(U)[mρ] is isomorphic to a direct sum of copies
of ρ, hence the map is surjective. ¤
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Next we show how one can usually recover SD(U)[mρ] from SD[mρ]. The caveat
(an observation going back to Ribet) is that it is not quite true that “all errors
are Eisenstein”. Let us say that a representation ρ is badly dihedral if ρ is induced
from a character of GK′ where K ′ is a totally imaginary quadratic extension of K
of the form K(δ) for some δ such that δ` ∈ K. For ` > 2 it is not difficult to check
that if ρ is badly dihedral then K must contain Q(µ`)+ and K ′ = K(µ`) (the field
K ′ contains ζ := δ/δ with δ the Galois conjugate of δ, and ζ 6= 1 is an `th root
of unity). In particular if ` > 3 and ` is unramified in K, then there will be no
badly dihedral representations at all. However for ` = 2 there may be more than
one possibility for K ′ (but only finitely many).

Lemma 4.11. The natural map SD(U)[mρ] → (SD[mρ])U is injective; moreover it
is an isomorphism if either

• YU has no elliptic points of order a multiple of ` or
• ρ is not badly dihedral.

Proof. It suffices to show that if V is any normal open compact subgroup of U then
the natural map

H1(YU,K ,F`) → H1(YV,K ,F`)U/V

is injective after localising at mρ, and is an isomorphism under the additional
hypotheses. Equivalently we must show that ρ does not appear in the F`[GK ]-
semisimplification of the kernel of the above map, and under the additional hy-
potheses it does not appear in the cokernel either.

Let ZU denote the reduced closed subscheme of YU defined by its elliptic points
and let ZV = (ZU ×YU

YV )red, WU = YU − ZU and WV = YV − ZV . Then the
morphism WV → WU is étale with Galois group Γ, a quotient of U/V , and the
Hochschild-Serre spectral sequence yields an exact sequence:

0 → H1(Γ,H0(WV,K ,F`)) → H1(WU,K ,F`)
→ H1(WV,K ,F`)U → H2(Γ, H0(WV,K ,F`)).

The inclusion WU → YU yields an exact sequence:

H1
ZU,K

(YU,K ,F`) → H1(YU,K ,F`)
→ H1(WU,K ,F`) → H2

ZU,K
(YU,K ,F`)

By the excision theorem, Hi
ZU,K

(YU,K ,F`) =
⊕

z∈ZU (K̄) Hi
{z}(YU,K ,F`). By the

Betti-étale comparison theorem for example, we see that each H1
{z}(YU,K ,F`) = 0

and that each H2
{z}(YU,K ,F`) is one-dimensional; moreover if ψ : X ′ → X is a

non-constant morphism of smooth proper curves over K with ψ(x′) = x, then the
induced map H2

{x}(X,F`) → H2
{x′}(X

′,F`) is trivial or an isomorphism according to
whether the ramification degree e(x′/x) is divisible by `. In particular, if z ∈ ZU (K)
is defined over L, then the morphism YU,L → P1

L gotten from a uniformizer at z
induces an isomorphism

F`(1) = H2
{0}(P

1
L
,F`)

∼−→H2
{z}(YU,L,F`)

of GL-modules. It follows that H2
ZU,K

(YU,K ,F`) ∼=
⊕

P∈ZU
IndGK

GK(P )
F`(1) as GK-

modules. Combining this with the corresponding exact sequence arising from
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WV → YV yields a commutative diagram

0 → H1(YU,K ,F`) → H1(WU,K ,F`) → H2
ZU,K

(YU,K ,F`)
↓ ↓ ↓

0 → H1(YV,K ,F`)Γ → H1(WV,K ,F`)Γ → H2
ZV,K

(YV,K ,F`)Γ

such that the kernel of the rightmost vertical map is isomorphic to the direct sum of
the IndGK

GK(P )
F`(1) over the P ∈ YU whose ramification degree in YV is divisible by

`. If P is such an elliptic point, then it is fixed by some δ ∈ D such that δ has order `
in D×/K×. The extension K ′ := K(δ) is a commutative integral domain within D,
and it is finite over K and hence a field; moreover it must be a quadratic extension
of K, imaginary at our preferred infinite place τ0 since δ has isolated fixed points
in H±, and at the other infinite places since K ′ ⊂ D and hence K ′ splits D. The
elliptic point will then be a special point for the Shimura curve YU with respect
to the torus ResK′/Q(Gm) and by Lemma 3.11 of [13] the elliptic point will be
defined over an abelian extension of K ′. Now under the additional hypotheses of
the lemma it follows that ρ does not appear in the F`[GK ]-semisimplification of the
direct sum of the IndGK

GK(P )
F`(1) as above.

Recall from Lemma 2.2 that the action of GK on H0(WV,K ,F`) = H0(YV,K ,F`),
hence on the kernel and cokernel of the middle vertical map, factors through an
abelian quotient. Finally we deduce from the snake lemma that ρ does not appear
in the semisimplification of the kernel of the leftmost vertical map, nor that of the
cokernel under the additional hypotheses. ¤

Finally we record some consequences of Conjectures 4.7 and 4.9.

Proposition 4.12. Conjecture 4.9 implies Conjecture 3.12.

Proof. Since the conjecture is known for Q, we can assume K 6= Q. Now ρ is
modular of weight σ if and only if ρ(−1) is isomorphic to an F`[GK ]-subquotient
of HomF`[U ](σ

∨,H1(YU ′.K ,F`)) for some D and U as in Definition 2.1. This is
equivalent to saying that mΣ

ρ(−1) (for any Σ at level U ′) is (maximal and) in the
support of HomF`[U ](σ

∨, SD(U ′)), or equivalently that

HomF`[U ](σ
∨, SD(U ′)[mρ(−1)]) 6= 0.

(Note in particular that by the proof of Lemma 4.10, “F`GK-subquotient” can be
replaced with “F`GK-submodule” as claimed after Definition 2.1.)

So if ρ is modular of an irreducible weight σ, then HomF`[U ](σ
∨, SD[mρ(−1)]) 6=

0 by Lemma 4.11. If Conjecture 4.9 holds, then we may write SD[mρ(−1)] =
ρ ⊗ (⊗′πp); moreover for each p|`, we have HomF`[Up](σ

∨
p , πp) 6= 0 so that σ∨p ∈

Wp(ρ(−1)∨), or equivalently that σ∨ ∈ W (ρ(−1)∨). Since ρ ∼= det(ρ) ⊗ ρ∨ and
σ ∼= ψσ∨ where ψ is the central character of σ, it follows easily from Proposi-
tion 3.13 that this is equivalent to σ ∈ W (ρ).

Conversely suppose that σ ∈ W (ρ). If [K : Q] is odd, then let D be a quaternion
algebra over K ramified at all but one infinite places and split at all finite places.
If [K : Q] is even, then let L denote the splitting field of ρ and choose a prime q
unramified in L(µ`) so that the conjugacy class of Frobq in Gal(L(µ`)/K) is that of
a complex conjugation. Let D be a quaternion algebra over K ramified at exactly q
and all but one infinite place. Then πDp(ρ) 6= 0 for all primes p, so we can choose U
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sufficiently small (of level prime to `) so that YU has no elliptic points and π
Up
p 6= 0

for all p not dividing `. We can then reverse the above argument to conclude that
ρ is modular of weight σ. ¤

Level-lowering theorems of Fujiwara [28], Rajaei [50] and the third author [37, 38]
can be viewed as partial results in the direction of Conjectures 4.7 and 4.9, of which
they are also consequences.

Proposition 4.13. Let ρ : GK → GL2(F`) be continuous, irreducible and totally
odd, let n be the (prime to `) conductor of ρ and let n′ = n

∏
p|` p2.

a) Suppose that Conjecture 4.7 holds, or that Conjecture 4.9 holds and ρ is not
badly dihedral. Then ρ ∼ ρπ for some cuspidal automorphic representation π of
GL2 /K of weight (~2, 0) and conductor dividing n′.
b) If [K : Q] is even, suppose that Conjecture 4.7 holds for K; if [K : Q] is odd,
suppose that Conjecture 4.9 holds for K and that ρ is not badly dihedral if ` = 2
or 3. If K is unramified at ` and ρ|GKp

arises from a finite flat group scheme over
OK,p for each p|`, then ρ ∼ ρπ for some cuspidal automorphic representation π of
GL2 /K of weight (~2, 2) and conductor n.

Proof. To prove (a) assuming Conjecture 4.7, let D be a quaternion algebra over K
ramified at all infinite places and at most one prime p0 over `, but no other finite
places. Let U =

∏
q Uq be the open compact subgroup of D×

f with

Uq =
{ (

a b
c d

) ∈ GL2(OK,q)
∣∣ c ≡ d− 1 ≡ 0 mod nOK,q

}

for q not dividing `, and Uq a pro-`-Sylow subgroup of a maximal compact subgroup
of D×

q for q|`. It follows from Emerton’s characterisation of πq in Theorem 4.1 that
π

Uq
q 6= 0 for all q not dividing `. The same is true for q|` since Uq is pro-` and

πq 6= 0. Therefore SD(U)[mρ] = SD[mρ]U 6= 0 and ρ ∼ ρπ′ for some cuspidal
automorphic representation π′ of D× of weight (~2, 0) with π′U 6= 0. Then the
cuspidal automorphic representation π of GL2 /K corresponding to π via Jacquet-
Langlands has conductor dividing n′.

The proof of (a) assuming Conjecture 4.9 is similar, except that we use the
assumption that ρ is not badly dihedral in order to apply Lemma 4.11.

The proof of (b) is also similar, using the fact that if ρ|GKp
arises from a finite

flat group scheme, then Wp(ρ) contains the trivial representation. (Recall that we
are assuming ` to be unramified in K, so that badly dihedral representations only
occur if ` = 2 or 3, as remarked above.) ¤

We remark that in fact the conclusions of Proposition 4.13 follow from weaker
modularity conjectures than Conjectures 4.7 and 4.9, together with known level
lowering results, at least if ` > 2 and ρ is not badly dihedral. Indeed, we will
explain that weak modularity (Conjecture 1.1) implies Proposition 4.13(a), given
these level lowering results. It seems that Proposition 4.13(b) is more subtle in that
it requires more control over the level at `, but these follow from Conjecture 1.1
and our weight conjecture (Conjecture 3.12), together with level lowering. (In fact,
the only part of Conjecture 3.12 we need is the case where ρ is finite at p, so that
Wp(ρ) contains the trivial representation.)

For (a), we can assume that ρ ∼ ρπ for some automorphic representation π of
GL2/K of some weight and level, by weak modularity. By Corollary 2.12, we can
assume that the weight is (~2, 0), and that the level is m

∏
p|` pap for some ideal m
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and some integers ap. The same argument as in the proof of Proposition 4.13(a)
above gives that ap ≤ 2. For primes q - `, we may use existing level lowering
results to deduce that we may take m = n, so that ρ is modular of weight (~2, 0)
and level n′, as required. For [K : Q] odd, these are due to the third author and
to Rajaei [37, 38, 50], under the technical hypothesis that ` > 2 and ρ is not badly
dihedral. When [K : Q] is even, a similar argument applies, but in order to use the
level lowering results mentioned above, one needs to begin by raising the level by
adding a prime, using Taylor’s theorem [59]. One can then switch to an appropriate
quaternion algebra to perform the level lowering, and finally remove the prime that
we added, using Fujiwara’s unpublished version [28] of Mazur’s Principle in the
case [K : Q] even.

Proposition 4.13(b) would work in the same way, given sufficiently strong level
lowering statements for primes p|`. However, these are not yet sufficient to de-
duce (b) from weak modularity and level lowering. But Conjecture 1.1 and Conjec-
ture 3.12, together with level lowering (and the results of Taylor and Fujiwara when
[K : Q] is even), is sufficient to deduce Proposition 4.13(b); one simply uses the
observation made in the course of the proof above that the trivial representation
lies in Wp(ρ) if ρ is finite at p.

Corollary 4.14. If Conjecture 4.7 or 4.9 holds, then there are only finitely many
continuous, irreducible, totally odd ρ : GK → GL2(F`) of conductor dividing n.

Proof. Note that by class field theory, there are only finitely many badly dihedral
ρ of a given conductor. We can therefore assume ρ is not badly dihedral, so by
Proposition 4.13(a), either conjecture implies ρ is modular of weight (~2, 0) and level
`2.n(ρ), where n(ρ) denotes the Artin conductor of ρ. Since there are only finitely
many automorphic representations of weight (~2, 0) and given bounded level, the
result follows. ¤
Corollary 4.15. Suppose that Conjecture 4.7 holds if [K : Q] is even, and Con-
jecture 4.9 holds if [K : Q] is odd. If E is an elliptic curve over K, then E is
modular.

Proof. Given E of conductor n, let ` run through all primes greater than 3 and
unramified in K, such that E has good reduction at all p|`. Then ρE,` is finite
at p, so Proposition 4.13(b) implies that ρE,` is modular of weight (~2, 2) and level
equal to n(ρE,`), which divides the conductor of E. So there is an automorphic
representation π(`) of level U1(n) and weight (~2, 2) whose mod ` representation
agrees with ρE,`, or equivalently one of weight (~2, 0) giving rise to ρE,`(−1). There
are only finitely many such automorphic representations, so there is a π such that
π = π(`) for infinitely many `. It follows that for all p not dividing n, the action
of Tp on πU1(n) is by ap(E) and that of Sp is trivial. Therefore ρE,`(−1) ∼ ρπ (for
any `), and hence L(E, s) = L(π, s). ¤
Remark 4.16. The remarks after Proposition 4.13 show that the conclusion of
Corollary 4.14 for ` > 2 actually follows from Conjecture 1.1 and known level low-
ering results. Similarly one sees that the conclusion of Corollary 4.15 follows from
Conjecture 1.1, Conjecture 3.12 and level lowering results. In fact the modularity
of E even follows from Conjecture 1.1 using modularity lifting results of Skinner-
Wiles [58], Fujiwara [27] or Taylor [60]. Furthermore, using the lifting results of
Kisin [46] and Gee [30] one can show (unconditionally) that if ρE,3 is irreducible
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and not badly dihedral, then E is modular. See also [57], [58] and [40] for additional
cases where modularity of E is known.
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[9] H.Carayol, Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986)

151–230.
[10] H.Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann.

Sci. Ecole Norm. Sup. 19 (1986) 409–468.
[11] R.Coleman, J.-F.Voloch, Companion forms and Kodaira-Spencer theory, Invent. Math. 110

(1992) 263–282.
[12] P.Colmez, Représentations de GL2(Qp) et (φ, Γ)-modules, preprint.
[13] C.Cornut, V.Vatsal, CM points and quaternion algebras, Documenta Math. 10 (2005) 263–

309.
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