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Abstract

In this paper, we continue the study of part of the analogue of

Serre’s conjecture for mod ` Galois representations for totally real

fields. More precisely, one knows, through results of Carayol and

Taylor, that to any Hilbert cuspidal eigenform over a totally real field

F, one can attach a compatible system of λ-adic representations of the

corresponding absolute Galois group. One may ask if a given λ-adic

or modulo ` representation is attached by this process to a Hilbert

modular form, and, if so, what weights and levels this form can have.

We prove some analogues of results known in the case F = Q.

Introduction

Fix a totally real field F and an odd rational prime `. We will be considering
continuous semisimple representations

ρ : Gal(F/F) −→ GL2(F`).

As all of the results of this paper are already known for F = Q, we will
assume F 6= Q. To certain Hilbert modular forms which are eigenforms for

∗AMS subject classification: 11F33, 11F41, 11F80, 11G18

1



2

the action of a Hecke algebra, it is known by work of Carayol and Taylor that
one may associate a compatible family of λ-adic representations of Gal(F/F),
as λ runs over primes of the number field generated by the Hecke eigenvalues.
See Theorem 1.1 below for a more precise statement. Reducing these modulo
those λ of residue characteristic `, and taking the semisimplifications, give
examples of representations ρ of the above form. Such ρ are said to be
modular. If a particular Hilbert modular form gives rise to ρ, we may say
(abusively) in this situation that ρ has weight and level equal to that of this
modular form, even though, in general, there will be many different Hilbert
modular forms giving rise to a given modular representation. Thus a modular
representation will have many different weights and levels. This should cause
no confusion in the remainder of the paper.

The aim of this paper is to prove an analogue of some results of Carayol
[4] on the possible levels of Hilbert modular forms associated to a given
modular modulo ` representation of the absolute Galois group of a totally
real field. In conjunction with our paper [12], this enables us to prove the
following unconditional result, in which our notation for Hilbert modular
forms (explained more precisely below) follows Hida [11]:

Theorem 0.1 Let ρ : Gal(F/F) −→ GL2(F`) be an irreducible modular
Galois representation associated to a Hilbert modular form f of arithmetic
weight k and level U1(npr), where r > vp(a(ρ)), the p-adic valuation of the
Artin conductor of ρ. (Recall that ` is odd.) Write π for the automorphic
representation of GL2/F associated to f . Suppose that the following supple-
mentary hypotheses hold:

• p - `

• if πp is principal series, then r = 1

• if πp is special, then r > 1 or NF/Q(p) 6≡ 1 (mod `)

• if [F(µ`) : F] = 2 then ρ is not induced from a character of the kernel
of the reduction of the cyclotomic character

• if [F : Q] is even, suppose that there exists a prime q 6= p such that πq

is special or supercuspidal

Then ρ is modular of weight k on U1(npr−1).

The condition that k be arithmetic, defined in §1 of this paper, implies that
the Hecke eigenvalues of an eigenform generate a number field. Throughout
the paper, all Hilbert modular forms will be assumed to have arithmetic
weight. Throughout the paper, the hypotheses above on F and ` will be
assumed to hold.
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Remark 0.2 One might expect stronger versions of these results to have
implications for the solubility of certain Diophantine equations over totally
real fields. While this is probably true, we recall that Ribet’s proof that the
Shimura-Taniyama-Weil conjecture implies Fermat’s Last Theorem relies on
the fact that S2(Γ0(2)) is trivial. The analogous statement for totally real
fields is rarely true; even for real quadratic fields of the form Q(

√
p) with

p prime, the space of Hilbert cusp forms of weight (2, 2) on the full Hilbert
modular group is trivial only for p = 2, 3, 5, 7, 13 and 17 (from calculations
in Freitag [9]). The Fermat cubic X3 + Y 3 = Z3 has non-trivial solutions
over many totally real quadratic fields; it is an elliptic curve and one rewrites
it as u2 = f(v) where f is a cubic with rational coefficients. Then there are
non-trivial solutions to the Fermat cubic over the totally real field Q(

√
f(v))

for values of v with f(v) > 0.

In outline this paper is similar to that of [4]. We begin by giving a result
classifying all cases where r can be strictly greater than vp(a(ρ)). We then
prove an analogue of Carayol’s Lemma, and the main result of this paper
is similar to one in [7]. Indeed, it will be clear that our methods are direct
generalisations of those of Carayol ([4]) and Diamond and Taylor ([6], [7]).
The final part of the paper is devoted to explaining how to deduce the above
result from the main theorem, together with the main result of [12].

We thank Kazuhiro Fujiwara for helpful remarks on a previous version
of this paper; he has also independently obtained very similar results, and
indeed stronger results in the case of weight 2. Many thanks also to the
anonymous referee for making many useful comments.

1 Preliminaries

Let F be a totally real number field of degree d over Q. Let I = {τ1, . . . , τd}
be the set of embeddings F ↪→ R.

We first fix our notation for Hilbert modular forms, which is based closely
on that of Hida ([11]). Precise definitions of these objects are to be found in
[11], and this is merely intended to be a brief summary of notation.

The weight of a Hilbert modular form is a vector k ∈ ZI , so that there
is one component for every infinite place of F. We say that k is arithmetic

if every kτ ≥ 2 and all are of the same parity. Throughout this paper,
all Hilbert modular forms will be taken to have arithmetic weight. Write
t = (1, . . . , 1) ∈ ZI . Then define v ∈ ZI

≥0 so that k + 2v is a multiple of
t and some vτ = 0. The transformation law for Hilbert modular forms is
normalised by the choice of a vector w of the form k + v − α.t for some
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integer α. Following Hida, we fix the choice α = 1 throughout. If G denotes
the algebraic group ResF/QGL2, then the level of a Hilbert modular form is
an open compact subgroup U of G(A∞). The (finite-dimensional complex)
vector space of Hilbert cusp forms of weight k and level U is denoted Sk,w(U)
(see [11], (2.3), for the precise definition of this space, where it is denoted
Sk,w,I(U ; C)). Later we will also consider Hilbert modular forms on more
general quaternion algebras.

In this paper, we will only ever consider subgroups U of the form

U =
∏

p

Up,

where Up is an open compact subgroup in GL2(Fp). Of most interest will
be the groups U1(n) introduced in [11], §2. If S is any finite set of finite
places of F, we define the Hecke algebra TS as the Z-algebra generated by
the Hecke operators Tq and Sq for q 6∈ S. The Hecke algebra TS acts on
the space Sk,w(U) through its quotient Tk,w(U) (this is our definition of this
latter algebra), where S is chosen so as to consist of precisely those finite
places where Up is not maximal compact in GL2(Fp). The condition that k
be arithmetic implies that the field generated by the eigenvalues of the Hecke
operators on a given eigenform is a number field.

Let Ak,w(U) denote the set of all f ∈ Sk,w(U) (up to scalars) which are
eigenfunctions for all of the operators in the Hecke algebra Tk,w(U). Thus,
elements f ∈ Ak,w(U) correspond to automorphic representations π(f) on
GL2/F of weight k with a fixed vector under U .

Similarly, A0
k,w(U1(n)) will denote those elements of Ak,w(U1(n)) which

are new, in the usual sense of not arising at any lower level n′. These corre-
spond to automorphic representations of conductor n. If µ is a character of
(OF/n)×, we can make similar definitions for the spaces Ak,w(U0(n), µ) and
A0

k,w(U0(n), µ).
We recall the following theorem:

Theorem 1.1 (Carayol–Taylor) Let f ∈ Ak,w(U1(n)), with k arithmetic.
Let Of be the ring of integers of a number field such that there exists a
morphism

θf : Tk,w(U1(n)) −→ Of

with f |T = θf (T )f . Then if λ is a prime of Of , there is a continuous
representation

ρf,λ : Gal(F/F) −→ GL2(Of,λ)

such that, for all primes p of F with different residue characteristic to that
of λ, one has ρf,λ|Dp

∼ σλ(π(f)p), the λ-adic representation associated (by
the local Langlands correspondence) to the local component at p of π(f).
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Definition 1.2 Given an irreducible modulo ` representation

ρ : Gal(F/F) −→ GL2(F`),

we say that ρ is modular of level n and weight (k, w) if there exists f ∈
Ak,w(U1(n)) and a prime λ|` of Of such that ρ coincides with ρf,λ mod λ.

Remark 1.3 Note that this is a slightly non-standard notion of level—we
do not insist that f be new of level n. If this holds, i.e., if f ∈ A0

k,w(U1(n)),
we will say f or ρ has new level n.

We will always denote the reduction of a representation by adding a bar—this
will also apply to characters.

In general, a modular ρ may have many possible weights and new levels
(see [1], [6], [7], [8], and [16] for a full discussion of the situation when F = Q).

However, following Serre, we will define an optimal level (Serre [17] also
predicts an optimal weight and character when F = Q). Define

n(ρ) = the Artin conductor (away from `) of ρ.

Then, in the same way as [17], we may ask:

Question 1 If ρ is modular, then is it modular of level n(ρ)?

The terminology “optimal” is justified by the following result.

Theorem 1.4 (Carayol-Livné) Suppose ρ is modular of level n. Then
n(ρ)|n.

This was proven by Carayol [4] and Livné [14]; Carayol only considers the
case F = Q, but the general case is proven in exactly the same way.

It follows that, if the question above is true, then ρ is modular of new

level n(ρ).
To answer the question (at least when F = Q), one “lowers the level” by

one prime at a time. Thus, if ρ is modular of level n, one chooses a prime p

such that p|(n/n(ρ)), and tries to show that ρ is also modular of level n/p.
This is the procedure adopted in [4], [5] and [16]. More precisely,

Conjecture 1 Let ρ : Gal(F/F) −→ GL2(F`) be a modular Galois represen-
tation of weight k and level U1(npr), where r > vp(a(ρ)). Then ρ is modular
of weight k on U1(npr−1).



1 PRELIMINARIES 6

Both Carayol and Livné also classify the possible situations in which the
inequality vp(n(ρ)) ≤ vp(n) can be strict, at least when F = Q. One readily
checks that this analysis is also valid for any totally real field, using [3].

Suppose π is an automorphic representation of GL2/F of conductor n

giving rise to the representation ρ. In other words, π corresponds to a Hilbert
modular form f ∈ A0

k,w(U1(n)) such that ρ = ρf,λ.
Let np = vp(n(ρ)), and let np = vp(n).
Then

Theorem 1.5 Suppose p - `. Then np = np except in the following cases:

1. πp is a special representation, associated to a character χ which is un-
ramified. Then it may happen that

np = 1, and np = 0.

2. πp is a special representation associated to a character χ which degen-
erates, i.e., a(χ) = 1 but a(χ) = 0. (Here, for any character χ, a(χ)
denotes the p-adic valuation of its conductor.) For such a character to
degenerate, we require that NF/Q(p) ≡ 1 (mod `). Here np = 2.

3. πp is a principal series representation, associated to two characters χ
and ψ, with at least one of the characters, χ say, degenerating. Then
np = 1 + a(ψ). Again, for this to occur, it is necessary that NF/Q(p) ≡
1 (mod `).

4. πp is a cuspidal Weil representation, W (Ω, ξ), where Ω is the unramified
quadratic extension of Fp, and ξ is a character of Ω× which degenerates
(so that a(ξ) = 1 and a(ξ) = 0). Then np = 2. For such a character to
degenerate, we require NF/Q(p) ≡ −1 (mod `).

We make the following conjecture, which is merely a reformulation of Con-
jecture 1 in the unramified special case (Case (1) of Theorem 1.5).

Conjecture 2 Suppose ` is as above. Suppose f ∈ A0
k,w(U0(np), µ), where

p - n`, µ factors through (OF/n)×, and that vp(n(ρ)) = 0. Then there exists
f ′ ∈ Ak,w(U0(n), µ′) for some character µ′ of (OF/n)× giving the same mod
` representation.

In the case F = Q, the main theorem of [4] is that Conjecture 2 (together
with a level raising conjecture) implies Conjecture 1.
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Remark 1.6 In this paper we develop methods analogous to those in the
case F = Q to lower the level in some of the cases of Theorem 1.5. More
precisely, we can completely lower the level in cases (2) and (4), and in some
examples of case (3), at least under the hypotheses on F and ` of Theorem
0.1. The main theorem of [12] proves Conjecture 2, which is no more than
a reformulation of Case (1), when NF/Q(p) 6≡ 1 (mod `). Thus to complete
the answer to Question 1, and lower the level to the optimal level, it remains
still to deal with the following cases:

• Case (1), where NF/Q(p) ≡ 1 (mod `), and

• Case (3), where both defining characters are ramified.

The dictionary between automorphic representations and Galois representa-
tions (as in the Carayol-Taylor theorem above) allow us to determine explic-
itly the form of the restrictions to Dp of ρ and ρf,λ in cases of degeneracy.
Once again, this analysis is exactly the same as in the case F = Q ([4],
Proposition 2), and we will omit the details.

Many of the proofs in this paper are closely modelled on those of [6]
and [7].

2 Modular forms over quaternion algebras

In this section, we introduce the objects which we will study.
Let B/F be a quaternion algebra, and let S(B) denote the set of all ram-

ified places of B. Denote by ν the reduced norm on B. Fix a maximal order
OB of B, and let G be the algebraic group ResF/QB

×, and let Z denote its
centre. Fix an isomorphism OB ⊗OF

OFv

∼= M2(OFv
) at all finite places of F

at which B is split. Write A∞ for the finite adeles of Q, and write G(A∞)

(resp. G(Ẑ)) for the A∞-valued points of G (resp.
∏

finite v(OB ⊗OF
OFv

)×).
Fix a finite Galois extension E/Q contained in C and containing F which
splits B, and choose an isomorphism

B ⊗Q E ∼= M2(E)I

satisfying [11], (1.1). Fix also a prime λ of E above `.
Fix k ∈ ZI

≥2, where all of the kτ have the same parity, and let v be as in
§1. Write k0 = max{kτ}. As in [11], we will investigate modular forms of
weight (k, w) on B.

Write
SB

k,w =
⊕

π

π∞,
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where π runs over the set of cuspidal automorphic representations of weight
(k, w) (we include those of dimension 1 for the moment). In other words, we
require that

πτ =

{
Dkτ ,k0−2, if τ ∈ I − S(B),
Dkτ ,k0−2, if τ ∈ I ∩ S(B),

where the representations Dkτ ,k0−2 and Dkτ ,k0−2 are defined in [3], §0.
The space SB

k,w is an admissible G(A∞)-module, where the action is
via right translation. If U is an open compact subgroup of G(A∞), write
Sk,w,B(U) for (SB

k,w)U . Then g ∈ G(A∞) maps Sk,w,B(U) to Sk,w,B(gUg−1).
Finally, we need the notion of modular form with representation. Suppose
that G(A∞) ⊃ U ⊃ U ′, with U ′ normal in U , and let

r : U/U ′(U ∩ Z(Q)) −→ Aut(V )

be an irreducible complex representation. Then we write

Sk,w,B(U, r) = HomU(V, Sk,w,B(U ′)).

We now define some λ-adic objects.
One has an isomorphism

G(R) ∼= GL2(R)I−S(B) × (H×)I∩S(B),

where H denotes the Hamiltonian quaternions. Let X = (h±)I−S(B), which
has a natural action of G(R). Let C∞ denote the elements g ∈ G(R) such
that g fixes (

√
−1, . . . ,

√
−1). Then one can identify X with the quotient

G(R)/C∞. For any open compact subgroup U of G(A∞), one forms the set
of points

MU (C) = G(Q)\G(A∞) ×X/U.

The cases which will interest us are those in which either 0 or 1 infinite places
of F are split in B. Then MU(C) has dimension 0 and 1 respectively.

When there is 1 infinite place split in B, MU(C) are the complex points
of a smooth proper Shimura curve MU , defined over a subfield of C which
we may identify with F. More generally, if there are r split infinite places of
B, and r > 0, then MU(C) are the complex points of a Shimura variety MU

which is smooth and proper over (a subfield of) the Galois closure of F if B
is not split.

We follow Carayol [3], §2.1, in defining a sheaf on MU (C).
For each i = 1, . . . , d, fix an isomorphism B ⊗F,τi

E ∼= M2(E) such that
OB ⊗OF,τi

OE
∼= M2(OE), and this defines an equivalence class, written ξi, of

representations of B× = G(Q) on Wi = E2. Consider

ξ =

d⊗

i=1

[(τi ◦ ν)viSymki−2(ξi)]
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of G(Q) acting (on the left) on the space W =
⊗d

i=1 Symki−2Wi. We also
denote this space by Lk,w,B(E). This action naturally extends to a unique
action of the algebraic group G on the Q-space underlying W . In fact, this
even extends to an integral model; if we choose the lattice Li = O2

E ⊂ Wi

which is stable under OB, the same procedure gives an action ξ of OB on
L = Lk,w,B(OE) =

⊗d
i=1 Symki−2Li.

Write Wλ for W ⊗E Eλ.
We first define a (total space of a) locally constant sheaf on the complex

variety MU(C) by

FU
k,w,B(Q`)C = G(Q)\G(A∞) ×X ×Wλ/U,

with G(Q) acting on the left on Wλ via G(Q`), and U acting trivially. In
particular, a section f of this sheaf is a locally constant map

f : G(A) −→Wλ

such that

for γ ∈ G(Q), f(γg) = ξ(γ`)f(g),

for u ∈ UC∞, f(gu) = f(g).

Note that the function
Ff (g) = ξ(g`)

−1f(g)

satisfies

for γ ∈ G(Q), Ff (γg) = Ff(g),

for u ∈ UC∞, Ff(gu) = ξ(u`)
−1Ff(g).

In the case where the complex analytic variety MU(C) has positive di-
mension, we may interpret this sheaf as a locally constant étale sheaf on MU

as follows, providing U is sufficiently small ([2], 1.4.1.1, or [12], §12). On
M(C) = lim

←
MK(C), the projective limit as K runs through open compact

subgroups of G(A∞), this sheaf is constant, with fibre Wλ. Thus we see that

FU
k,w,B(Q`)C = (M(C) ×Wλ)/(U/(U ∩ Ẑ(Q))),

as U/(U ∩ Ẑ(Q)) is the group of the covering M(C) −→ MU(C) when U is

sufficiently small, i.e., the quotient M(C)/(U/(U ∩ Ẑ(Q))) may be identified

with MU(C). Here Ẑ(Q) is the closure of Z(Q) in Z(A∞), and u ∈ U acts
on the right on Wλ by ξ(u`)

−1.



2 MODULAR FORMS OVER QUATERNION ALGEBRAS 10

Choose a lattice Lλ inside Wλ stabilised by U , and pick a normal subgroup
U ′ ⊂ U such that U ′ acts trivially on Lλ/`

nLλ.
Then we may define a sheaf Fk,w,B(Z`)C by

FU
k,w,B(Z`)C = (M(C) × Lλ)

/(
U/(U ∩ Ẑ(Q))

)
,

and
FU

k,w,B(Z/`nZ)C =
(
MU ′(C) × (Lλ/`

nLλ)
)/

(U/U ′).

Carayol then defines an étale sheaf of (Z/`nZ)-modules FU
k,w,B(Z/`nZ) on

MU by

FU
k,w,B(Z/`nZ) =

(
MU ′ × (Lλ/`

nLλ)
)
/(U/U ′).

Write FU
k,w,B for the inverse limit of these sheaves (as n varies).

Write O = OE,λ, and fix throughout an embedding of O into C. If N is
an O-module, define

Li
k,w,B(U ;N) = H i

et(MU ⊗ F,FU
k,w,B ⊗O N).

Again this makes sense whenever the dimension of MU(C) is positive.
We next define a sheaf “with representation” r : U/U ′(U ∩ Z(Q)) −→

Aut(V ). (The reason for insisting r be trivial on U ∩Z(Q) is that the group
U/U ′(U ∩Z(Q)) is exactly the group of the étale covering MU ′ −→ MU when
U is sufficiently small.) Let A be a finitely generated free O-module such
that there is a representation, which we also denote by r,

r : U/U ′(U ∩ Z(Q)) −→ Aut(A)

u 7→ ru

such that A ⊗O C ∼= V . We amend the above construction of the sheaf
FU

k,w,B, by replacing Wλ by HomEλ
(A ⊗O Eλ,Wλ), and choosing the lattice

HomO(A,Lλ) inside this space instead. Here U acts on the right on f ∈
HomO(A,Lλ) by (fu)(α) = ξ(u`)

−1f(ru(α)). In this case, one obtains a
sheaf FU

k,w,B(r). Write

Li
k,w,B(U, r;N) = H i

et(MU ⊗ F,FU
k,w,B(r) ⊗O N)

for an O-module N . We reiterate that these étale sheaves only make sense
when U is sufficiently small.

Write Lk,w,B(U, r;N) for Li
k,w,B(U, r;N) if B has i split infinite places.

When dim MU(C) = 0, similar constructions give spaces

Lk,w,B(U, r;N) = H0(MU(C),FU
k,w,B(r)C ⊗O N),

the global sections of a locally free sheaf on a discrete set of points. Later,
however, we will re-interpret this in terms of modules.
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3 Eisenstein ideals

Suppose S is a finite set of places of F containing all infinite places. We will
introduce modules for a Hecke algebra TS, defined as the polynomial ring
over Z generated by Tq and Sq for primes q 6∈ S.

Suppose S also contains all primes over which B is ramified. Then TS

acts naturally, through a quotient which we denote TS
k,w,B(U), on the space

Sk,w,B(U) for any open compact subgroup U =
∏

qUq of G(Ẑ) such that
Up = GL2(OF,p) for all p 6∈ S. We say that U is an S-subgroup when these
conditions are verified. If again G(A∞) ⊃ U ⊃ U ′, with U ′ normal in U , U ′

an S-subgroup, then for any irreducible complex representation

r : U/U ′(U ∩ Z(Q)) −→ Aut(V )

as before, we can define TS
k,w,B(U, r).

In particular, suppose S contains all prime ideals dividing some ideal n.
Suppose m is a maximal ideal of TS of residue characteristic ` in the support
of Sk,w(U1(n)) for k arithmetic. Associated to m is the homomorphism

θm : TS −→−→ TS/m ↪→ F`

and an eigenform fm ∈ Sk,w(U1(n)) such that, for T ∈ TS, one has fm|T =
θm(T )fm for some character θm of TS whose reduction modulo ` coincides
with θm. Then the semisimplification of the modulo ` reduction of the Galois
representation associated (by Theorem 1.1) to fm gives a representation

ρ
m

: Gal(F/F) −→ GL2(F`).

Its properties may be deduced from Theorem 1.1. In particular, we note that
for primes q - n`, one has

tr ρ
m
(Frobq) = θm(Tq)

det ρ
m
(Frobq) = NF/Q(q)θm(Sq).

For topological reasons, the image of ρ
m

is finite, so that ρ
m

factors
through a finite group.

We now generalise from [6] the condition that a maximal ideal m as above
should be Eisenstein.

Recall first from class field theory that there is an isomorphism

Gal(F/F)ab ∼= F×\A×F/(F
×
∞)+.

Any finite quotient of Gal(F/F)ab is then a quotient of some

Cl(f) = F×\A×F/(F
×
∞)+Af,
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for some integral ideal f of OF, where

Af = {π ∈ A∞×F |π − 1 ∈ f}.

Cl(f) is isomorphic to the narrow ray class group of F modulo f. Correspond-
ing to Cl(f) is the ray class field Ff, satisfying Gal(Ff/F) ∼= Cl(f).

We say that a maximal ideal m of TS of residue characteristic ` as above
is Eisenstein if there exists some integral ideal f such that for all but finitely
many prime ideals q which are trivial in the narrow ray class group Cl(f),
one has Tq − 2 ∈ m and Sq − 1 ∈ m.

In a similar way to [6], Proposition 2, m is Eisenstein if and only if ρ
m

is reducible. (The proof is exactly the same, except that for the forward
implication, one uses H = Gal(F/Ff(µ`)), and for the reverse implication,
choose f so that Ff contains Fnc(µ`), where c is the conductor of the character
χ appearing in the proof.)

Finally, we say that a TS-module is Eisenstein if all maximal ideals in its
support are Eisenstein.

4 Carayol’s Lemma

For the proof of Theorem 0.1, we will essentially follow the original method
of Carayol ([4]) to lower the level at supercuspidal places. Namely, we use the
Jacquet-Langlands correspondence to switch to a quaternion algebra which
is ramified at p, and use an analogue of Lemme 1 of [4].

As Carayol uses geometric techniques, he switches to an indefinite quater-
nion algebra of discriminant pq, taking advantage of a level raising result to
add an auxiliary prime q to the level. He then applies his lemma to the
corresponding Shimura curve.

In the setting of Hilbert modular forms, the level raising result is not
yet known in full generality, although there are some unpublished results
of Fujiwara along these lines (when [F : Q] is even, the result is known—
see Taylor [18] or the final section of this paper). We therefore follow the
alternative approach outlined by Diamond ([5], §5), and prove an analogue
of Carayol’s Lemma by switching to a definite quaternion algebra.

The form of the statement of the theorem is taken from [7], Theorem 9.

Theorem 4.1 Suppose B is a quaternion algebra over F (possibly split),
and suppose S is a finite set of places of F containing all infinite places
of F and all ramified places of B. Let k be arithmetic, and let U and U ′

be S-subgroups with U ′ normal in U . Suppose r (resp. χ) is an irreducible
representation (resp. a character with `-power order) of U/U ′(U∩Z(Q)). Let
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θ : TS
k,w,B(U, r) −→ F` be a homomorphism for which ρθ is irreducible. Then

there exists a homomorphism θ
′
: TS

k,w,B(U, r ⊗ χ) −→ F` such that the two

maps TS −→ F` induced by θ and θ
′
coincide.

We first observe that under the hypothesis on ` made in Theorem 0.1, it
suffices to prove the result for S-subgroups U which are “sufficiently small”
in the sense of §2. For this, one follows [12], §12, to find a prime ideal q0 /∈ S
and q0 - ` such that

• U1
1 (q0) is “sufficiently small”

• there are no congruences between forms of level U and q0-new forms of
level dividing U ∩ U1

1 (q0).

Here,

U1
1 (q0) =

{
α ∈ G(Ẑ)

∣∣∣∣α ≡
(

1 ∗
0 1

)
(mod q0)

}

Then applying Theorem 4.1 with S replaced by S∪{q0}, U by U ∩U1
1 (q0)

and U ′ by U ′ ∩ U1
1 (q0), and using the second property of U1

1 (q0) above, one
sees that the conclusion of Theorem 4.1 is also valid for U , even if U is not
“sufficiently small”.

In particular, we will be able to consider the case U = U1(n).
By the Jacquet-Langlands correspondence, it suffices to prove this result

if B has at most one split infinite place. Thus we consider the two cases in
which B is totally definite, and where B has exactly one split infinite place.
(As F 6= Q, B is then never split.)

Exactly as in [7], it suffices to prove

Proposition 4.2 Suppose that θ : TS −→ F` is a homomorphism with
non-Eisenstein kernel m, U a sufficiently small S-subgroup. Let κ be the
residue field of O. Then θ factors through TS

k,w,B(U, r) if and only if m ∈
suppLk,w,B(U, r; κ).

We will prove this proposition in the following two sections.

5 The totally definite case

In this case, B is totally definite, and MU(C) consists of a finite number of
points. Note that G(R) = C∞. We can interpret the space of cusp forms in
the following manner.

Recall that in §2 we defined the space Lk,w,B(OE) as a representation
space (denoted ξ) of M2(OE)I ∼= OB ⊗Z OE. If R is an OE-algebra, the same
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procedure gives a representation ξ of (OB⊗ZOE)⊗OE
R ∼= M2(R)I on a space

Lk,w,B(R). If N is an R-module, we write Lk,w,B(N) = Lk,w,B(R) ⊗R N . We
will usually apply this with R = O.

If f : G(A) −→ Lk,w,B(C), and u = u∞u∞ ∈ G(A∞) × G(R), define the
transform

(f |k,wu)(g) = ξ(u∞)−1f(gu−1).

Then for an open compact subgroup U ⊂ G(Ẑ), a model for Sk,w,B(U) is

Sk,w,B(U) = {f : G(Q)\G(A) −→ Lk,w,B(C)| f |k,wu = f for u ∈ UG(R)}.

Note that this condition is equivalent to

f(gu) = ξ(u∞)−1f(g).

Define also

Sk,w,B(U)triv =

{
{f ∈ S2t,t,B(U)|f factors through ν}, if k = 2t,
0, if k 6= 2t.

Write
S̃k,w,B(U) = Sk,w,B(U)/Sk,w,B(U)triv.

It is this space which really corresponds to the space of cusp forms. The
inductive limit of these spaces (as U gets smaller and smaller) becomes an
admissible G(A∞)-module via

(gf)(h) = f(hg).

We now turn to the `-adic model denoted Lk,w,B(U ;N) by analogy with
the notation of §2. Here N will be an O-module. Then the action of O×B on
Lk,w,B(N) extends to an action of (OB ⊗Z Z`)

× by continuity, and we also
denote this action by ξ. If U is as above, and also U` =

∏
λ|` Uλ is contained

in (OB ⊗Z Z`)
× (as will be the case for all U of interest in this paper), then

Lk,w,B(U ;N), for an O-module N , is the set

{f : G(Q)\G(A∞) −→ Lk,w,B(N)|ξ(u`)
−1f(g) = f(gu) for u ∈ U}.

Define Lk,w,B(U ;N)triv and L̃k,w,B(U ;N) in the above manner. Again, the
inductive limit of these spaces is an admissible G(A∞)-module, via

(gf)(h) = ξ(g`)f(hg).

We give models for the corresponding objects with representation r :
U/U ′(U ∩ Z(Q)) −→ Aut(V ) as at the end of §2. Again,

Sk,w,B(U, r) = HomU(V, Sk,w,B(U ′)),
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and define its trivial subspace to consist of those homomorphisms which are
valued in Sk,w,B(U ′)triv. We find that Lk,w,B(U, r;N) is the set of functions

f : G(Q)\G(A∞) −→ HomO(A,Lk,w,B(N))

satisfying
fgu(a) = ξ(u`)

−1fg(ru(a)) for u ∈ U, a ∈ A,

where we write fg for the map f(g). The spaces Lk,w,B(U, r;N)triv and

L̃k,w,B(U, r;N) are defined in the now familiar way.
Again, the inductive limits of these constructions are admissible G(A∞)-

modules. The actions of G(A∞) give rise to an action of Hecke operators
at finite level (see [13] or [6] for the definitions). Suppose U and U ′ are S-
subgroups. Then TS acts on all of the above spaces. Recall that we fixed an
embedding O ↪→ C; this induces a TS-equivariant isomorphism

Sk,w,B(U, r) ∼= Lk,w,B(U, r; C)

under which the trivial subspaces correspond. For prime ideals q trivial in
the narrow ray class group Cl(n) (where n is the level of U), one finds from
the formulae (see [11], (3.9)), that Sq acts on the trivial subspaces by 1, and
that Tq acts by (1 + NF/Q(q)) (as functions in the trivial subspaces factor
through the norm). It follows that the space Lk,w,B(U, r; C)triv is Eisenstein.

Given U , fix a decomposition

G(A∞) =

r⊕

i=1

G(Q)giU.

We have an isomorphism

Lk,w,B(U, r;N) ∼=
r⊕

i=1

Homi,

where Homi denotes the set of homomorphisms θ ∈ HomO(A,Lk,w,B(N))
such that

θ(a) = ξ(u`)
−1θ(ru(a)) for a ∈ A, u ∈ U ∩ g−1

i G(Q)gi.

The isomorphism is given by sending f to (fgi
)r
i=1.

The condition that U is sufficiently small implies that

U ∩ g−1
i G(Q)gi ⊂ U ∩ Z(Q)+ ⊂ (O×F )+,
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the totally positive units in OF (see [2], 1.4.1.1 and its proof). In this case, if
a ∈ A and u ∈ U∩g−1

i G(Q)gi, ru(a) = a by definition of the representation r.
Further, if α ∈ (O×F )+, it is easy to show that ξ(α) = 1. Thus the condition
above on homomorphisms f ∈ HomO(A,Lk,w,B(N)) is automatic, and we see
that, for any O-module N ,

Lk,w,B(U, r;N) ∼=
r⊕

i=1

HomO(A,Lk,w,B(N))

=
r⊕

i=1

HomO(A,Lk,w,B(O) ⊗O N)

∼= (

r⊕

i=1

HomO(A,Lk,w,B(O))) ⊗O N

(as A and Lk,w,B(O) are finite free O-modules)
∼= Lk,w,B(U, r;O) ⊗O N

We immediately deduce the following lemma (as in [7], Lemma 5):

Lemma 5.1 Suppose θ : TS −→ F` is a homomorphism with kernel m which
is not Eisenstein. Then θ factors through TS

k,w,B(U, r) if and only if m ∈
suppLk,w,B(U, r; κ).

6 One split infinite place

A method similar to that of Carayol ([3], 2.2.4) shows that

L1
k,w,B(U, r; C) ∼= Sk,w,B(U, r)2,

and this isomorphism is equivariant for the action of TS. (This is also a
special case of the Matsushima-Shimura theorem: see, for example, [11],
6.2.) Write Lk,w,B(U, r;N) for L1

k,w,B(U, r;N).
One has the following lemma, which acts as a substitute for the final two

isomorphisms of §5:

Lemma 6.1 ([7], Lemma 6) Let m be a maximal ideal of TS with residue
characteristic `. Suppose either that m ∈ suppLk,w,B(U, r;O)tors or that
m ∈ suppLk,w,B(U, r; κ)/Lk,w,B(U, r;O) ⊗ κ, where κ is as in the statement
of Proposition 4.2. Then m is Eisenstein.
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Proof. In the same way as [7], we see that Lk,w,B(U, r;O)tors is a quotient
of L0

k,w,B(U, r; `−nO/O) for some n, and Lk,w,B(U, r; κ)/Lk,w,B(U, r;O) ⊗ κ
injects into L2

k,w,B(U, r; `−nO/O).

But the action of Gal(F/F) on L0
k,w,B(U, r;N) factors through Gal(Fab/F)

as the components of MU ×F F are defined over Fab ([2]); the same holds for
L2

k,w,B(U, r;N) by Poincaré duality. Exactly as in [6], Lemma 3, it follows
that m is Eisenstein.

Now one deduces in the same way as §5 (exactly as in [7]), that

Lemma 6.2 Suppose θ : TS −→ F` is a homomorphism with kernel m which
is not Eisenstein. Then θ factors through TS

k,w,B(U, r) if and only if m ∈
suppLk,w,B(U, r; κ).

Lemmas 5.1 and 6.2 together complete the proof of Theorem 4.1.

7 Lowering the level results–[F : Q] odd

In this section, we prove analogues of Carayol’s results in the case where
d = [F : Q] is odd. We remind the reader that we still insist that ` satisfies
the hypothesis of Theorem 0.1.

Fix a mod ` representation ρ of Gal(F/F) which is modular.
As mentioned above, we will assume the conjectural analogue of Ribet’s

theorem ([16] and [5]), namely, Conjecture 2, although we remind the reader
(§7.1 below) that it is known in many cases. We will now consider the cases
of Theorem 1.5 in turn, and try to remove a prime from the level.

7.1 Case (1)

Conjecture 2 is exactly a reformulation of case (1). Although we will assume
it true in general, the main result of [12] proves this conjecture in many cases,
as we now explain.

Here, πp is special unramified at p, but vp(n(ρ)) = 0. It thus corre-
sponds to a Hilbert modular form in A0

k,w(U0(np), µ) where µ factors through
(OF/n)×. We use the Jacquet-Langlands correspondence to switch from
GL2/F to the quaternion algebra B/F ramified at {τ2, . . . , τd}. Applying the
main result of [12] if the appropriate hypotheses hold, and switching back
to GL2/F gives the required result. Thus there is a form in Ak,w(U0(n), µ′)
(for some µ′) with the same modulo ` Galois representation (i.e., proving
Conjecture 2) under the supplementary hypotheses listed in the statement
of Theorem 0.1:
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Theorem 7.1 Conjecture 2 holds if NF/Q(p) 6≡ 1 (mod `).

7.2 Case (2)

When F = Q, Carayol uses a local twisting argument to solve this case. Such
an argument is not always available for more general totally real number
fields. Instead we adapt slightly the argument of [4], §5, originally intended
to solve the analogue of Case (4) (see Theorem 7.3 below).

Then πp is a special representation, corresponding to a degenerating char-
acter of F×p . If n is the conductor of π, then vp(n) = 2. Write n = n′p2.

Theorem 7.2 Assume Conjecture 2. If πp is as in Case (2) of Theorem 1.5,
then there exists π′, of conductor dividing n′p, which also gives rise to ρ.

Proof. We switch, using the Jacquet-Langlands correspondence to the quater-
nion algebra B, ramified at {p, τ1, . . . , τd}. Choose a maximal order OB of B.
Suppose that, under this correspondence, π is sent to π̃. We can describe the
local component π̃p following [7]. We find that π̃p is ξ◦ν, where ν denotes the
reduced norm on Bp, and ξ is a tamely ramified character with unramified
reduction.

We apply Theorem 4.1 above, with U = U1(n
′)O×Bp

and U ′ = U1(n
′)U(p),

where U(p) denotes the units of O×Bp
congruent to 1 modulo mBp

, the maximal
ideal of OBp

, and we think of U1(n
′) as contained in

∏
q6=p GL2(OFq

). Let r =
π̃p|O×

Bp

(regarded in the obvious way as a representation of U/U ′(U ∩Z(Q)))

which is itself a character of `-power order, and let χ = r−1. Let S be a finite
set of places including all infinite places and all primes dividing n. Let

θ : TS
k,w,B(U, r) −→ F`

correspond to π̃. Then apply Theorem 4.1 to find an automorphic represen-
tation π̃′ corresponding to

θ
′
: TS

k,w,B(U, 1) −→ F`.

Then from the dictionary of the Jacquet-Langlands correspondence, π̃′ cor-
responds to an automorphic representation π′ on GL2/F which is special un-
ramified at p. The result follows.

7.3 Case (3)

We say a few words here about the principal series case, in which one of the
two defining characters is tamely ramified with unramified reduction. Carayol
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uses a version of Theorem 4.1 when the other character is unramified, and a
local twisting argument when the other character is ramified. As remarked
above, this local twisting argument is not valid for general totally real fields,
and we do not consider this case here. However, we note that our version
of Theorem 4.1 suffices to prove Case (3) when one of the characters is
tamely ramified but with unramified reduction, and the other character is
unramified. In this case, if the conductor of π is n, then vp(n) = 1. Write
n = n′p. Exactly as in [4], we apply Theorem 4.1 with r being the central
character of π, regarded as a character of U1(n

′)/U1(n). As in Case (2), r is
1-dimensional, and we let χ = r−1. Theorem 4.1 provides an automorphic
representation on U1(n

′) which is unramified principal series at p, and so has
conductor n′.

7.4 Case (4)

For this case, we follow [4], §5, as in §7.2 above.
Here πp is a supercuspidal representation, associated to a degenerating

character ξ of Ω×, where Ω is the unramified quadratic extension of Fp,
which does not factor through NΩ/Fp

. If n is the conductor a(π) of π, then
this implies that vp(n) = 2. Write n = n′p2.

Theorem 7.3 Assume Conjecture 2. If πp is as in case (4) of Theorem 1.5,
then there exists π′, of conductor dividing n′p, which also gives rise to ρ.

Proof. We switch, using the Jacquet-Langlands correspondence once more,
to the quaternion algebra B of 7.2. Suppose that π is sent to π̃. Using [10],
we may describe the image π̃p, a representation of B×p = (B ⊗ Fp)

×. This is
exactly as in [4].

Let κΩ denote the residue field of Ω, and choose an embedding Ω ↪→ Bp.
Let

U(p) = {α ∈ O×Bp
|α− 1 ∈ mBp

}.
Then

π̃p = Ind
B×

p

Ω×U(p)ξ̃,

where ξ̃ is a character trivial on U(p) and agreeing with ξ on Ω×. (Note that
Ω×U(p) is of index 2 in B×p .)

We apply Theorem 4.1 with U = U1(n
′)O×Bp

, U ′ = U1(n
′)U(p), where we

think of U1(n
′) as contained in

∏
q6=p GL2(OFq

). Then

U/U ′ ∼= O×Bp
/U(p) ∼= κ×Ω .
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Then π̃p|O×

Bp

is the sum ξ̃ ⊕ ξ̃σ. We let r = ξ̃|O×

Bp

, which we may think of as

a representation of U/U ′ ∼= κ×Ω. Let S be a finite set of places including all
infinite places and finite primes dividing n. Let

θ : TS
k,w,B(U, r) −→ F`

correspond to π̃. But ξ is a character of Ω× with a(ξ) = 1, so ξ is trivial on
1 + mΩ. Thus ξ restricts to a character of O×Ω/(1 + mΩ) ∼= κ×Ω. In this way,

we can think of ξ (and ξ̃) as characters of U/U ′. Note also that as a(ξ) = 0,
ξ has trivial reduction.

Put χ = ξ̃−1. Then Theorem 4.1 furnishes an automorphic representation
π̃′ corresponding to

θ
′
: TS

k,w,B(U, 1) −→ F`

Switching back to GL2/F, and recalling the Jacquet-Langlands dictionary
from [7], we obtain an automorphic representation π′ whose component at p

is special unramified (as the trivial character does factor through the norm),
and thus vp(a(π

′)) = 1.

8 Lowering the level results–[F : Q] even

Suppose that ρ arises from the cuspidal automorphic representation π on
GL2/F. If there is a finite prime q1 of F at which πq1

is square-integrable
(special or supercuspidal), then, by the Jacquet-Langlands correspondence,
ρ also arises from an automorphic representation on the quaternion algebra
B ramified at {q1, τ2, . . . , τd}. In this case, the results and proofs of §7
go through, using this quaternion algebra to solve Case (1), and using the
algebra got by changing the invariants at p and at τ1 to solve Case (4). In this
case, the proof of [12] of Conjecture 2 under the supplementary hypotheses
goes through.

If, on the other hand, no such prime q1 exists, we use the following result
of Taylor ([18]):

Theorem 8.1 Suppose [F : Q] is even. Let f ∈ Ak,w(U0(n), µ). Then there
exists an auxiliary prime q - n`, and f ′ ∈ Ak,w(U0(nq), µ′), with µ′ factorising
through (OF/n)×, new at q, such that ρf,λ ≡ ρf ′,λ (mod λ).

We may then assume that the fixed mod ` representation ρ arises from
a form f which lies in A0

k,w(U0(nq′1), µ), and which is special unramified at
q′1. (It may be necessary to replace n with some ideal dividing n.) Then µ
is a character on (OF/n)×. Then, as above, ρ also arises from an automor-
phic representation on the quaternion algebra B ramified at {q′1, τ2, . . . , τd}.
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Again, the results and proofs of §7 go through, using this quaternion algebra
to solve Cases (1)–(3), and using the algebra got by changing the invariants
at p and at τ1 to solve Case (4). Having removed an appropriate power of
p from the level, it now remains to remove the auxiliary prime q′1 which we
added. But for this, we may again use Conjecture 2.
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Math. Paris VII (1978) 37–77

[11] H. Hida, ‘On p-adic Hecke algebras for GL2 over totally real fields’, Ann.
Math. 128 (1988) 295–384

[12] F. Jarvis, ‘Mazur’s Principle for totally real fields of odd degree’, To
appear in Compositio Math. (1998)



REFERENCES 22

[13] R. Langlands, ‘Modular forms and `-adic representations’, Springer Lec-
ture Notes in Math. 349 (1973) 361–500
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