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Abstract

In this paper, we give an elementary proof of a curious identity

of elliptic functions. It is very similar to a beautiful proof given by

Coates of a different identity. The result was strongly motivated by

Wildeshaus’s generalisation of Zagier’s conjecture.

Introduction

Suppose that G is an abelian group. In our applications, we will have in

mind the case G = C, the complex numbers under addition. We will write

the group law on G additively, and denote the identity by 0. Write

Pic0(G) = {
∑

g∈G

ng(g)|
∑

g∈G

ng = 0 and ng = 0 for all but finitely many g}.

Thus Pic0(G) denotes the degree 0 part of the integral group ring (the aug-

mentation ideal). There is a natural homomorphism

qr : Pic0(G) ⊗ Q −→ Symr(G) ⊗ Q

(x) − (0) 7→ x⊗ · · · ⊗ x⊗ 1

∗AMS subject classification: 11G16, 33E05; secondary: 19F15, 19F27
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and extend it linearly to all of the divisors. One has the following result:

Proposition 0.1 ([2], Lemma 2.4; [6], Lemme 4.1) The kernel of q2 is

generated by symbols of the form

(x, y) = (x+ y) + (x− y) − 2(x) − 2(y) + 2(0)

for x, y ∈ G.

Thus, in some sense, the relation

(x+ y)2 + (x− y)2 = 2x2 + 2y2

is the “only” linear relationship between squares of linear forms. The corre-

sponding question for r > 2 seems unresolved.

We fix a Z-lattice L, and concentrate attention on the case G = C as

mentioned above. We recall the well-known Siegel function,

ϕL(z) = ϕ(z, L) = e−zη(z,L)/2σ(z, L)∆(L)1/12,

defined for z ∈ C\L, and extend its definition linearly to divisors D =

∑r
i=1 ai(zi) in C by

ϕL(D) =

r∏

i=1

zi /∈L

ϕL(zi)
ai .

Unfortunately, the Siegel function is not an elliptic function, and so this

formula does not naturally descend to the elliptic curve C/L. However, given

a divisor D on C/L, we define ϕL(D) to be ϕL(D̃), where D̃ =
∑r

i=1 ai(zi)
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is a divisor on C such that
∑r

i=1 aizi ⊗ zi = 0 in C ⊗ C. I am grateful to

Norbert Schappacher for pointing out the remark (due to Jörg Wildeshaus)

that this is the correct choice of lift of D to C in this situation.

Then we prove the following:

Theorem 0.2 For any isogeny of elliptic curves C/L
ψ

−→ C/L′ and any

divisor D in ker(q2), we have up to a root of unity,

ϕL′(D) =
∏

w∈kerψ

ϕL(D ⊕ w)

where D ⊕ w denotes the translate of the divisor D obtained by adding w to

every point in its support.

Throughout the paper, the symbol = will indicate equality of two complex

numbers only up to a root of unity; we are therefore really working in the

ring C× ⊗Z Q. Write also O for the identity in C/L.

For the proof of this result, we will have to deal separately with several

cases. As ker(q2) is generated by symbols of the form (x, y), it suffices to

consider divisors of this form. Generically, x and y do not lie in L, but the

form of ϕL(D) is slightly different when this fails to hold (as ϕL(D) only

deals with the points in the support of D not in L), and so we treat the



4

other cases separately. In particular, corresponding to the cases

x 6= ±y in C/L

x = y, x 6= −y in C/L

x 6= y, x = −y in C/L

x = y, x = −y in C/L,

we have respectively the symbols

{x, y} = (x+ y) + (x− y) − 2(x) − 2(y)

{x, x} = (2x) − 4(x) if 2x 6= O in C/L

{x,−x} = (2x) − 2(x) − 2(−x) if 2x 6= O in C/L

{x, x} = −4(x) if 2x = O in C/L

The first section of this paper provides a proof of the theorem for the

symbol {x, y}, and the other section proves the result for the other symbols.

This work would not have been possible without many discussions with

Klaus Rolshausen and Norbert Schappacher; I should like to thank them very

much for these, and also for their hospitality during my visits to Strasbourg.

Indeed, that the theorem should hold was suggested by Rolshausen [6], who

uses a version of the above result, together with all of his results, in his work

on the lowest step of Wildeshaus’s generalisation of Zagier’s conjecture to

the case of elliptic curves (the proof given in this paper was first outlined in
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a letter of January 17th, 1996 from the author to Rolshausen). We would

not be able to improve on his presentation, nor that of Wildeshaus himself

([8] and [9]), and so we make no attempt to introduce the formalism of

Wildeshaus. We note, however, that Wildeshaus has also proven a version

of the theorem above for elliptic curves over an arbitrary base scheme, using

different and very much more sophisticated techniques, in [9]. For similar

distribution relations, we also refer the reader to [3]. We offer these proofs in

the hope that they are of interest in their own right, and that the techniques

used here may prove more intricate distribution relations.

1 The generic situation

The proof generalises a proof due to Coates and Taylor appearing in the

appendix to [1].

Write

ζ(z, w, t;L) =
ϕ(z + w + t, L)ϕ(z − w + t, L)

ϕ(z + t, L)2ϕ(w + t, L)2
.

In particular

ζ(z, w, 0;L) = (℘L(w) − ℘L(z))∆(L)−1/6.

First let β ∈ End(C/L). Put

ω(β) =
ζ(βz, βw, 0;L)∏
t∈ker β ζ(z, w, t;L)

.
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This is well-defined in C×⊗Q. ω(β) is meromorphic of divisor 0 so that ω(β)

is constant.

One shows that there exists a constant c(L) such that

ω(β) =
ζ(βz, βw, 0;L)∏
t∈ker β ζ(z, w, t;L)

= c(L)deg β−1.

If such a constant exists, it is unique: if c(L) and c′(L) are two choices, one

considers the two endomorphisms β = [2], β = [3] to find

c(L)3 = c′(L)3

c(L)8 = c′(L)8

so that c(L) = c′(L).

Lemma 1.1 If β1, β2 ∈ End(C/L), one has

ω(β2β1) = ω(β1)
deg β2ω(β2).

Proof. Consider the exact sequence

0 −→ ker β1 −→ ker(β2β1)
β1

−→ ker β2 −→ 0.

Let H be a set of representatives of ker β2 in ker(β2β1). Then each point

t ∈ ker(β2β1) may be written as r + s, with r ∈ H , s ∈ ker β1. Then:

∑

r1,r2∈H

∑

s1,s2∈ker β1

{x+ r1 + s1, y + r2 + s2}
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=
∑

r1,r2∈H

[
deg β1

∑

s∈ker β1

{{x+ r1, y + r2} ⊕ s}

]

= deg(β2β1)
∑

r∈H

∑

s∈ker β1

{{x, y} ⊕ (r + s)}

One calculates

∏

r1,r2∈H

∏

s1,s2∈ker β1

ζ(x+ r1 + s1, y + r2 + s2, 0;L)

in two different ways. First, one has

∏

r1,r2∈H

∏

s1,s2∈ker β1

ζ(x+ r1 + s1, y + r2 + s2, 0;L)

=

[
∏

r∈H

∏

s∈kerβ1

ζ(x, y, r + s;L)

]deg β2β1

= [ω(β2β1).ζ(β2β1x, β2β1y, 0;L)]deg β2β1

On the other hand,

∏

r1,r2∈H

∏

s1,s2∈ker β1

ζ(x+ r1 + s1, y + r2 + s2, 0;L)

=
∏

r1,r2∈H

[
∏

s∈ker β1

ζ(x+ r1, y + r2, s;L)

]deg β1

=
∏

r1,r2∈H

[ω(β1).ζ(β1(x+ r1), β1(y + r2), 0;L)]deg β1

= ω(β1)
deg(β1) deg(β2)2

[
∏

r∈ker β2

ζ(β1x, β1y, r;L)

]deg(β1) deg(β2)

= ω(β1)
deg(β1) deg(β2)2 [ω(β2).ζ(β2β1x, β2β1y, 0;L)]deg(β1) deg(β2)
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One then deduces that

ω(β2β1)
deg(β1) deg(β2) = ω(β1)

deg(β1) deg(β2)2ω(β2)
deg(β1) deg(β2)

and the result is immediate.

Corollary 1.2 One has

ω(β1)
deg(β2)−1 = ω(β2)

deg(β1)−1

Proof. One has β1β2 = β2β1, as the ring End(E) is commutative for elliptic

curves E. Then ω(β1β2) = ω(β2β1); use the lemma to complete the proof.

Corollary 1.3 ω(β) = c(L)deg(β)−1.

Proof. Choose µ1, µ2 ∈ End(C/L) with (deg(µ1) − 1, deg(µ2) − 1) = 1. For

example, one can choose µ1 = [2], µ2 = [3]. Then there exist n1, n2 with

n1(deg(µ1) − 1) + n2(deg(µ2) − 1) = 1.

One applies the last corollary, with β and µ1 and also with β and µ2. One

finds

ω(β) = (ω(µ1)
n1ω(µ2)

n2)deg(β)−1.

If one writes

γ(z, w, t;L) = c(L)ζ(z, w, t;L),

the lemma gives:
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Corollary 1.4 γ(βz, βw, 0;L) =
∏

t∈ker β γ(z, w, t;L).

Theorem 1.5 c(L)12 = 1, so that c(L) is trivial in C× ⊗ Q.

Proof. We compute c(L) by making a particularly convenient choice of the

endomorphism β. As in [1], we choose β = [2]. Then we know that

ω([2]) =
ζ(2z, 2w, 0;L)∏
t∈ker[2] ζ(z, w, t;L)

= c(L)3.

One sees easily (by rearranging the terms of the product) that

∏

t∈ker[2]

ζ(z, w, t;L)4 =
∏

s1,s2∈ker[2]

ζ(z + s2, w + s1, 0;L).

Now we recall that

ζ(z, w, 0;L) = (℘(w) − ℘(z))∆(L)−1/6

(where ℘(z) is defined with reference to L). Let N (resp. D) denote the

numerator and denominator of ω([2])4 = c(L)12. Thus

N = (℘(2w) − ℘(2z))4∆(L)−2/3

and

D =
∏

s1,s2∈ker[2]

(℘(w + s1) − ℘(z + s2)).∆(L)−8/3.

The quotient N
D

is c(L)12, so constant. To evaluate it, we consider the asymp-

totic behaviour of N and D as w and z approach 0. So suppose w and z are
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very small. Then

N ∼

(
1

(2w)2
−

1

(2z)2

)4

∆(L)−2/3

=

(
z2 − w2

w2z2

)4

4−4∆(L)−2/3

Now we compute the asymptotics of D. Let {0, t1, t2, t3} be representa-

tives for ker[2]. Then

D ∼

(
1

w2
−

1

z2

) (
1

w2

)3 (
−

1

z2

)3

.∆(L)−8/3

∏

s1,s2∈ker[2]−{0}

(℘(w + s1) − ℘(z + s2)).

Suppose

℘(w + ti) = ℘(ti) + ciw
2 + higher order terms

for small w. Write also

Ci =
∏

j 6=i

(℘(ti) − ℘(tj)).

Then, for k = 1, 2, 3,

(℘(w + tk) − ℘(z + t1))(℘(w + tk) − ℘(z + t2))(℘(w + tk) − ℘(z + t3))

∼

3∏

i=1

(℘(tk) − ℘(ti) + ckw
2 − ciz

2)

=

3∏

i=1

(℘(tk) − ℘(ti)) +

3∑

i=1

(ckw
2 − ciz

2)
∏

j 6=i

(℘(tk) − ℘(tj)) + h.o.t.

= ck(w
2 − z2)Ck + h.o.t.,
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terms vanishing as tk = ti for some i. It follows that

D ∼

(
1

w2
−

1

z2

) (
1

w2

)3 (
−

1

z2

)3

.∆(L)−8/3(w2 − z2)3
3∏

k=1

ckCk

=

(
z2 − w2

w2z2

)4

(
3∏

k=1

ckCk)∆(L)−8/3

Thus

c(L)12 =
N

D
∼

∆(L)2

44(
∏3

k=1 ckCk)
.

But

℘′(w + ti) = 2ciw + h.o.t.

℘′(w) =
−2

w3
+ h.o.t.

We have the classical identity ([1], App., Lemma 7)

℘′(w)℘′(w + t1)℘
′(w + t2)℘

′(w + t3) = ∆(L)

from which it follows that

c1c2c3 = −
∆(L)

16
.

Also,

C1C2C3 =
∏

j 6=k

(℘(tk) − ℘(tj)) = −
∏

j>k

(℘(tk) − ℘(tj))
2.

Define the constants g2 and g3 as usual, by the equation

℘′(z)2 = 4(℘(z) − ℘(t1))(℘(z) − ℘(t2))(℘(z) − ℘(t3))

= 4℘(z)3 − g2℘(z) − g3.
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Then ∆(L) is by definition g3
2 − 27g2

3. One easily calculates

C1C2C3 = −
∆(L)

16
.

It follows that

c(L)12 =
N

D
∼ 1

as required.

Now let ψ : C/L −→−→ C/L′ be an isogeny. Let

ν(ψ) =
γ(ψz, ψw, 0;L′)∏
t∈kerψ γ(z, w, t;L)

.

Again, ν(ψ) is constant.

Lemma 1.6 If C/L
ψ

−→−→ C/L′ ψ′

−→−→ C/L′′, then

ν(ψ′ψ) = ν(ψ)degψ′

ν(ψ′).

The proof is analogous to that of Lemma 1.1.

Corollary 1.7 Let µ ∈ Z>0. Then ν(ψ)deg(µ)−1 = 1.

Proof. One sees that

[µ]L′ ◦ ψ = ψ ◦ [µ]L.

ν([µ]) = 1 as [µ] is an endomorphism. Then one applies Lemma 1.6, and the

result follows.

To complete the proof, one chooses again µ = 2, 3, to see that ν(ψ) = 1.

This gives the distribution relation for isogenies also.
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2 The other symbols

Write {{x, y}⊕ t} for the divisor (x+ y+ t)+ (x− y+ t)−2(x+ t)−2(y+ t)

(and, more generally, if X is a divisor which corresponds to a symbol, we will

write {X ⊕ t} for the same divisor, but adding t to each point).

For the other symbols, take the derivations of the relation of §1.

Proposition 2.1 The distribution relation is valid for the symbol {x, x},

where 2x 6= O.

Proof. One again has the identity

∏

t∈kerψ

ϕ({{x, y} ⊕ t}, L) = ϕ({x, y}, L′).

For the symbol {x, x}, where 2x 6= O, put x = y + δy, and one lets δy → 0.

One knows now that

∏

t1,t2∈kerψ

ϕ({y + δy + t1, y + t2}, L) = [ϕ{y + δy, y}, L′)]degψ.

But

∏

t1,t2∈kerψ

[
ϕ(2y + δy + t1 + t2, L)ϕ(t1 − t2 + δy, L)

ϕ(y + δy + t1, L)2ϕ(y + t2, L)2

]

=

[
∏

t∈kerψ

ϕ(2y + δy + t, L)ϕ(t+ δy, L)

ϕ(y + δy + t, L)2ϕ(y + t, L)2

]degψ

=


ϕ(δy, L).

∏

t∈kerψ

ϕ(2y + δy + t, L)

ϕ(y + δy + t, L)2ϕ(y + t, L)2
.

∏

t∈kerψ\{O}

ϕ(t+ δy, L)




degψ
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One also has

[ϕ({y + δy, y}, L′)]degψ

=

[
ϕ(2y + δy, L′)ϕ(δy, L′)

ϕ(y + δy, L′)2ϕ(y, L′)2

]degψ

Now one uses the following result of Robert ([4], ch.2, 4.1), to get the result,

on taking the limit as δy → 0. The result of Robert says that if L′ ⊃ L, and

if NL′ ⊂ L, one has the equality

∏

t∈kerψ\{O}

ϕ(t, L)12N =

(
∆(L′)

∆(L)

)N

.

But, because of the formula

ϕ(z, L) = e−
1

2
zη(z,L)σ(z, L)∆(L)1/12,

one sees that, if δz ∼ 0,

ϕ(δz, L) ∼ 1.δz.∆(L)1/12,

as σ′(0) = 1. The result follows.

The method for the symbol {x,−x} is the same:

Proposition 2.2 The distribution relation holds for the symbol {x,−x},

where 2x 6= O.

Proof. One knows that

∏

t1,t2∈kerψ

ϕ({y + δy + t1,−y + t2}, L) = [ϕ{y + δy,−y}, L′)]degψ.



2 THE OTHER SYMBOLS 15

But

∏

t1,t2∈kerψ

[
ϕ(δy + t1 + t2, L)ϕ(2y + t1 − t2 + δy, L)

ϕ(y + δy + t1, L)2ϕ(−y + t2, L)2

]

=

[
∏

t∈kerψ

ϕ(δy + t, L)ϕ(2y + t+ δy, L)

ϕ(y + δy + t, L)2ϕ(−y + t, L)2

]degψ

=


ϕ(δy, L).

∏

t∈kerψ

ϕ(2y + δy + t, L)

ϕ(y + δy + t, L)2ϕ(t− y, L)2
.

∏

t∈kerψ\{O}

ϕ(t+ δy, L)




degψ

One also has

[ϕ({y + δy,−y}, L′)]degψ

=

[
ϕ(δy, L′)ϕ(2y + δy, L′)

ϕ(y + δy, L′)2ϕ(−y, L′)2

]degψ

One uses the result of Robert to finish the proof.

Finally, there remains the case of the symbol {x, x} if 2x = O.

Proposition 2.3 The distribution relation holds for the symbol {x, x}, where

2x = O.

Proof. We have just shown the relation

∏
ϕ({y, y}, L′) =

∏

t∈kerψ

ϕ({{y, y} ⊕ t}, L).

The proof works in the same way as for the symbol {x, x} when 2x 6= O.

But if 2x = O, one has ϕ(2x+ δx+ t, L) = ϕ(δx+ t, L), and:

∏

t1,t2∈kerψ

[
ϕ(δx+ t1 + t2, L)ϕ(t1 − t2 + δx, L)

ϕ(x+ δx+ t1, L)2ϕ(x+ t2, L)2

]

=

[
∏

t∈kerψ

ϕ(δx+ t, L)ϕ(t+ δx, L)

ϕ(x+ δx+ t, L)2ϕ(x+ t, L)2

]degψ
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One also has

[ϕ({x+ δx, x}, L′)]degψ

=

[
ϕ(δx, L′)2

ϕ(x+ δx, L′)2ϕ(x, L′)2

]degψ

One uses the result of Robert to finish the proof.
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[6] K. Rolshausen, ‘Éléments explicites dans K2 d’une courbe elliptique’,
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