An elementary proof of a distribution relation
on elliptic curves®

Frazer Jarvis
Department of Pure Mathematics
University of Sheffield
Sheffield S3 7TRH

U.K.
a.f.jarvis@shef.ac.uk

March 26, 2004

Abstract

We give another elementary proof of a certain identity of elliptic
functions arising from the K-theory of elliptic curves and Wildeshaus’s
generalisation of Zagier’s conjectures. This proof consists of a calcu-
lation with the g-expansions, and is offered in the hope that its more
explicit flavour may be generalised to other situations.

Introduction

Fix Z-lattices L, L' C C such that there is an isogeny ¢ : C/L — C/L’.
We recall the well-known Siegel function,

pr(z) = oz, L) = e #1020 (2, L)A(L)Y'?,

defined for z € C\L, and extend its definition linearly to divisors D =
> iai(z) in C by

pr(D) = H pr(z)".

z; &L
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We will be particularly interested in divisors of the form

(z,y) = (z+y) + (z —y) — 2(x) — 2(y) +2(0)

which have the property that they lie in (and, in some sense, generate) the
kernel of the squaring homomorphism

¢ : Pic’(C) — Sym?*(C)

defined by ¢2((z) — (0)) = 2z ® z and extending linearly. We explained in [1]
that, given a divisor D on C/L in the kernel of this squaring map ¢z, we
define ¢, (D) to be @ (D), where D = 37 a;(z) is a divisor on C such
that Y7 a;2; ® z; = 0 in C® C. T am grateful to Norbert Schappacher for
pointing out the remark (due to Jorg Wildeshaus) that this is the correct
choice of lift of D to C in this situation.

Then we prove the following:

Theorem 0.1 Suppose that x, y € C/L are such that z, y, x +y and x — y
do not lie in kery. Write D for the divisor

(z,y) = (z+y) + (z —y) — 2(x) — 2(y) +2(0)

in C/L. Then
pr(D)= [[ ¢e(Dow)

weker ¢

where D @ w denotes the translate of the divisor D obtained by adding w to
every point in its support.

Throughout the paper, the symbol = will indicate equality of two complex
numbers only up to a root of unity; we are therefore really working in C* ®;Q.
This implies that quantites such as A(L) 12 above are well-defined. The reader
will readily determine the power to which to raise each expression in order to
get genuine equality, but we prefer not to complicate the notation too much.

The importance of the result is explained in [2] and [3]. The reader is
referred to these sources and to the original papers of Wildeshaus ([5] and
[6]) for a discussion of Zagier’s conjecture in the setting of elliptic curves.

1 The proof

We first consider the behaviour of ¢ under isomorphisms.



Lemma 1.1 For a € C*, suppose that the isogeny
v:C/L — C/L
z = az
is an isomorphism—i.e., L' = aL. Then
olaz, L") = p(z, L).
Proof. One has

n(az,al) = a 'n(z L)
o(az,al) ao(z, L)
Alal) = a 2A(L).

The result immediately follows.

In particular, one may always reduce to the case L = Z~+Zt, with 7 in the
upper half-complex plane, by scaling a lattice L = Zw; +Zws to Z+Z(ws /w1 ),
and replacing ws by —ws if necessary to ensure that im(wy/w;) > 0.

In the case that L is of the particular form

L = Zr+7Z
z = ar+b

we can give a g-expansion (i.e., Fourier expansion) for ¢
One knows that

1 o (1—q"u)(1 - q"u™t)
O'(Z, L) — __.en(l,L)Z /26 mz(l . u) H —
271 e (1—q")

(where, as usual, u = €*™*, ¢ = €?™7). Also,
A(L) = 2mi)2q [ (1 = ¢
n>1
The Legendre relation is:

()22 /2=2n(2)/2 _ pzlen(1)—n(2)]/2 _ jemia
It follows that:

p(z,L) = e ™52 (1 —u) [J(1 = ¢"u)(1 = ¢"u™)
n>1
1

_ qiaQ—%“%eQ’”b(“_l)ﬂ(l N u) H(l N q"u)(l o qnu—l).

n>1



Remark 1.2 The second Bernoulli polynomial, By(X), is equal to X2 —
X + %. It is not a surprise that this should appear in this setting; Bernoulli
polynomials appear throughout the theory—see [4], for example, where the
third Bernoulli polynomial plays an important role.

Now one considers a more general isogeny. Such a function

v:C/L —» C/L

z — az

factorises as
¢ :C/L—C/aL —» C/L,

where the second morphism is the natural projection. It remains to prove
the result for projections

¢v:C/L —» C/L

z — z

where L' D L.
By the theory of elementary divisors, there exists a basis {wy,ws} of L'/
such that

LI = Zwl—l—ng

where B|A. Put N = A/B. Then the projection ¢ further factorises as
v:C/L—C/L" — C/L,

where
L" := (NZ)w, + Zws.

It thus suffices to prove the result in the two cases where either

LI = Zwl—l—ng
L = (NZ)W1+ZQ}2,

or

L/ = Zwl—l—ng
L = (BZ)Q)1+(BZ)Q)2

Recall the definition of the symbol (z,y). Here, z and y are points of
C/L, which lift to points z, w € C. We give the g-expansion for ¢((z,y)).
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Let L = Z7 + Z. Put
q — e27ri7'

627riz

627riw )

Then one has

o(z4+w,L)o(z —w, L)
r,y), L) = T
Ay L) = o PR

1 (1 —ww)(v—u) H (1—q"uv)(1 — ¢"u o™ 1) (1 — ¢"uv™)(1 — ¢"u"'v)
B e e e e U RO R (e
(This follows from the g-expansion of ¢.)

Write ((z,y) @ t) for (x+y+1t)+ (r—y+1t)—2(x+t) —2(y+1) (and,
more generally, if X is any divisor, we will write (X @) for the same divisor,
but adding t to each point).

Lemma 1.3 Letvy : C/L — C/L' be the natural projection as above. Then
Y (@t+tLytt) =deg. > ((wy) @),
ty,ta€ker ) teker ¢
assuming that no term in the support of the left-hand side is 0.
Proof. One expands the left-hand side.
First consider the case where
LI = Zwl -+ ZCL)Q
L = (NZ)w1 + ng.
Then
ker ) = {mw;|m € Z/NZ}.
Let 7 = wy/wy, ¢ = ™. Also let
Ly = Ljwy=Z+7Zr
LO = L/Nw1 = Z+Z(

-
N
If z = bwy + aws, w = dwy + cwoy, put

Z=z/w = ar+b= (Na)(%) +5b
T
N

and u = €2™% ¢y = ¥™W_ Let t; = myw; € kert). Then

W=w/w, = c¢ct+d=(Nc)(=)+d
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Proposition 1.4 One has
II ¢((@y) @1). L) =ol(z,), L)
t€ker

Proof. One has
L] ey @b, L)Y

t€ker v

= I el@+ty+t)L)

t1,t2€ker
P, Z+my W+m
= H (( N 3 I 2), L) (using Lemma 1.2)
ml,m2=0
T [t paz S e - oo,
= q 27I"L ﬂ m
ml,mQ—O (1 (Z+m1) ( N W+ 2))
H H 1 o qﬁ€217\§1(2+m1+w+m2 )(1 o qN€217\r’z(Z W4+mq— mg))
m1,me=0n>1 1 - qﬁe%(zﬂm)) (1 — qu NZ(Z“”I))?
(1 _ q};e%fy( Z—W—m1—m2))(1 _ q};e%’y( Z+W—m1+m2))

(1 — q%eQ§l(W+m2)) (1 — qzve N (W+m2))

27 27
When m; run over the elements 0,..., N — 1, the values of e ¥ ™ e~ ™2

27i

e~ (Mmtm2) and e N (ma—ma) 1y through the set of Nth roots of unity N
times eaCh. From the equation

N-1

(1—2V) =[] (1= ¢Ra),

m=0

one finds

[T ey @0, L)Y

teker ¢

(
(L= g uo)(1 — g"u o)1 = guv)(1 = g"u'v) |
b;[l (1 —qu)?(1 —¢"u=1)%(1 — ¢"v)?*(1 — qmv—1)?



(again using Lemma 1.2) as desired.

Now one considers the second case. It is more complicated, but also
elementary.
Suppose that

L/ = ZW1+ZCL)2
L = (BZ)w; + (BZ)ws

Then
ker ¢ = {swy + tws|s,t € Z/BZ}.

Let 7 = wy/wy, ¢ = €™, Let
Lo=7+7Zr.
If z = bwy + aws, w = dwy + cwy, put

Z=z/w = ar+b
W =w/w et +d

and u = 2™y = 2™V Then

Proposition 1.5 One has
II ¢((@y) @t). L) =ol(z,y), L)
teker ¢

Proof. One has ,
L] e y) @), L))"

teker ¢

= H e((z+t,y+t2),L)

t1,t2€ker Y
B-1
Z+T1T+81 W+T2T+82
= L
H SO(( B ) B )7 0)

r1,51,72,52=0

H (1 . 62175” (Z+W+(7"1+r2)7+81+s2))(6% (W+rar+s2) _ 627” (Z+7"17'+51))
= q 6
_ H(Z+4r1m4+51))2 i (WHrar+s2
rissi (1 6 ) (1 B ))
Ti,8i n>1



First take the product over s; and ss:

B

H (1 —q"2u)P (¢ — ")
1 _ quu (1 _ qr‘gv)QB

7.._

i_[ H 1 _ anJrrlJrrguv) (1 _ anJrrlfrguvfl)B

et ]_ _ an+r2u)2B(1 _ an—rgu—l)QB

( Bn r1— rgu—lv—l)B<1 _ an—rl—i—rgu—l,U)B
(1 _ anJrrgv)QB(l _ anfr2U71)2B
Note that the denominator of this expression is the same as that for the

series for ¢((x,y), L')?*. This follows as one has products of the following
form:

H (1—q"u) HH ¢#m (1—u)BH(1—qn)B

=0n>1 n>1
Thus we concentrate on the numerator of this expression. Note that

H<qr2U _ quu)B _ H(qu(l . qum?“)fl))B

T T
2 (B-1)B 3 _ _
= ¢B = B 1_[(1—(]”1 "2upt).
T4
Then the numerator is:

4
5_ 1p3(B-1), B3

q 5q v
[T = g uo) @ (1 — g uo™)=@ (1 — g u™ o) (1 = gouv)k)5,
a€Z
where:
0, if a < —1,
ki(a) = a+1 if0<a<B-1,
B, if B—1<a.

if a < -8B,
a+B 1f1—B<a<0
if 0 < a.

]{ZQ(CL) =

if1 <a.

if a <0,
ifl <a<B,
if B<a.
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One calculates:
[Tocz(1 = ¢ uv)" @ (1 = gouv™")*2 @ (1 — g*u=ro B — g u o)k
[[>:1(1 = qmuv)B(1 — gmuo=1)B(1 — g"u=tv=1)B(1 — g"u~tv)B

as

(1 —uv)(1-— quv)2_3(1 . q2uv)3_B i (1— qB—qu)_l
(1—¢" Puv ™1 = Puww ™2 (1= ¢ luo )P (1 —uwo )P
(1= Bu o (1 — ¢ Bu o 2. (1 — o H)BL

1— ou= "B — 2u—t0)2 B ... (1 — ¢Bty~tu)!
q q q
But one has relations of the form:
(1= guv) = (~g"uwn)(1 — q~"u~'0 "),
so that the product is
(1 = 00). () B2 (B () () B (L — )
quu q>uv qB2uv”
(1 o uv_l)B.(—ql_Buv_l)(—qQ_Buv_l)Z . (_q—luv—l)B—l
= (1 w) (1w P () () (g )
(") (") (o)
_ (1 . uv)B(l _ uvfl)B.vaBqu%B(Bfl)@Bfl)

Because
B* B¥B-1) BYB-1)(2B-1) B

and
B*+ B(B — B?) = B?,
it follows that

L] #((@y) @t), L))"

tcker 1)

R

(1 —q"uv)(1 — ¢"u o™ (1 — ¢"uv™) (1 — ¢"u"tv) 7
b;[l (1 —qmu)?(1 —qru=1)%(1 — ¢"v)?(1 — gmv—1)?

= o((,y)/wr, Lo)"*
= o((z,y), L)

This concludes the proof.
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