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Problem: Given a positive integer, apply the following algorithm. If it is even, halve it, and if it
is odd, multiply it by three and add one. Repeat this process iteratively.

Example: Start with 3. This is odd, so multiply it by three and add one. This gives 10, which is
even, so halve this, to obtain 5. Repeated action of this process gives 16, 8, 4, 2, 1, 4, 2, 1,. . . and we
have entered a loop.

Conjecture: Whichever number we start with, the process will always culminate in the loop . . . ,
4, 2, 1, 4, 2, 1,. . . .

Define: T (n) = the result of the algorithm on n. Define T k(n) = T (T k−1(n)).

The problem dates from before World War II, when it seems to have been proposed by Lothar
Collatz, whilst a student at Hamburg [1], but it has resisted all subsequent attempts at solution, despite
having been verified up to 1012.

The behaviour of individual numbers of the sequence n, T (n), T 2(n),. . . is too erratic to discover
any useful non-trivial result, so the properties which should be investigated are those which relate to the
sequence as a whole. A natural choice in the number of steps k until T k(n) = 1 (assuming the conjecture).
So:

Define: f(n) = inf{m |T m(n) = 1}.

For example, f(1) = 0, f(2) = 1, f(3) = 7, f(4) = 2, etc.; in general, f(2n) = f(n) + 1 and
f(2n − 1) = f(6n − 2) + 1 (n > 1). As we tabulate f(n), certain patterns emerge.

An easy one is that for all K ≥ 1, f(8K + 4) = f(8K + 5).

To prove this, note that by operation of the algorithm:

8K + 4 −→ 4K + 2 −→ 2K + 1 −→ 6K + 4
8K + 5 −→ 24K + 16 −→ 12K + 8 −→ 6K + 4

and so T 3(8K + 4) = T 3(8K + 5). So f(T 3(8K + 4)) = f(T 3(8K + 5)). But, by definition, f(T k(n)) =
f(n) − k, so f(8K + 4) = f(8K + 5), as required.

Similarly f(16K + 2) = f(16K + 3); f(32K + 22) = f(32K + 23) etc.

In any interval, a few values of f(n) will occur often. For instance, in the range 4900 to 4999,
f(n) takes only thirteen distinct values. In this range, f(n) = 134 for 29 values of n, f(n) = 41 has 72
solutions, and so on.

But the result I would like to investigate is more apparent by looking at differences between
consecutive values of f(n). So, with this in mind:

Define: g(n) = f(n + 1) − f(n).

So, as a corollary to a previous result, g(8K + 4) = 0 (K ≥ 1).

For what follows next, we need a little elementary number theory.

Theorem. If a, b are coprime, then there exist integers x, y such that ax + by = 1. �

A rigorous proof is easy to find, but to construct x, y, we run the Euclidean algorithm in reverse;
e.g., for a = 12, b = 7,

12 = 1 × 7 + 5, 7 = 1 × 5 + 2, 5 = 2 × 2 + 1, 2 = 2 × 1

Then 1 = 5 − 2 × 2 = 5 − 2 × (7 − 1 × 5) = 3 × 5 − 2 × 7 = 3 × (12 − 1 × 7) − 2 × 7 = 3 × 12− 5 × 7. So
x = 3, y = −5 solves 12x + 7y = 1.

An easy corollary is:
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Theorem. If d is a multiple of (a, b), the highest common factor of a and b, then there exist

integers x, y such that ax + by = d. Furthermore, if x0, y0 are solutions to this, then so are x0 + kb,

y0 − ka for all integers k, and all solutions are of this form. �

If we now restrict ourselves to cases where a and b are coprime, we define

da,b = min{
√

x2 + y2 | ax + by = n}

which is well-defined, since the function f(X) =
√

(x0 + bX)2 + (y0 − aX)2 is convex. Now if X runs
through the integers, min{f(X) |X ∈ Z} is well-defined.

Now we return to the 3X + 1 problem, and tabulate the values of g(n) for n = 1, 2, . . . , we may
observe a rather curious result, namely that d13,31(g(n)) is always “small”; in other words, the difference
between two consecutive values of f(n) is expressible as 13x + 31y for small values of x and y. For
example, the values of f(n) are tabulated below for 5385 ≤ n ≤ 5399:

n f(n) g(n) x y [d(g(n))]2

5385 147 −80 1 −3 10
5386 67 80 −1 3 10
5387 147 −80 1 −3 10
5388 67 0 0 0 0
5389 67 −39 −3 0 9
5390 28 0 0 0 0
5391 28 88 2 2 8
5392 116 −49 1 −2 5
5393 67 93 0 3 9
5394 160 0 0 0 0
5395 160 −44 −1 −1 2
5396 116 0 0 0 0
5397 116 −49 1 −2 5
5398 67 0 0 0 0
5399 67 49 −1 2 5

where d(k) = d13,31(k).

This phenomenon occurs for all numbers greater than about 20, and as far as 20000 at least, and
seems to hold even for random samples of twenty consecutive seven-digit numbers.

For smaller numbers, from 1 to 1000, computer checking has shown that the numbers 13 and 31
perform significantly better than any other pair with a, b coprime and less than 50. [2]

We consider the pair n, n + 1. The algorithm essentially consists of a halving or a trebling. If we
look at the operation X 7→ 3X + 1, we may neglect the addition of one, because it is fairly insignificant.
Then for n to be transformed to 1, we need a(n) halvings and b(n) treblings, with a(n) = b(n) = f(n).
Similarly, for n + 1 to be transformed to 1, we need a(n + 1) halvings and b(n + 1) treblings with
a(n + 1) + b(n + 1) = f(n + 1).

So, to summarise,

n ·
3b(n)

2a(n)
≈ 1 a(n) + b(n) = f(n)

(n + 1) ·
3b(n+1)

2a(n+1)
≈ 1 a(n + 1) + b(n + 1) = f(n + 1)

For sufficiently large n,
3b(n)

2a(n)
≈

3b(n+1)

2a(n+1)

Put a = a(n + 1) − a(n), b = b(n + 1) − b(n); then

3b

2a
≈ 1 (1)

Also, a + b = a(n + 1) − a(n) + b(n + 1) − b(n) = f(n + 1) − f(n) = g(n).

a + b = g(n) (2)

a, b ∈ Z (3)
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Solving (1), (2) gives:

a ≈ g(n) · log6 3

b ≈ g(n) · log6 2

Thus
b

g(n)
≈ log6 2

But b, g(n) ∈ Z, so to find possible values of g(n), look for rational approximations to log6 2. To find
good rational approximations, the obvious method is to look at the continued fraction expression. I give
this in standard notation; explanations may be found in any number theory textbook.

log6 2 = [0, 2, 1, 1, 2, 2, 3, 1, 5, 2, . . .]

giving successive convergents
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The denominators of these fractions are the best possible values of |g(n)|. Thus, the best values for |g(n)|
are 1, 2, 3, 5, 13, 31, 106,. . . , and there are the numbers 13 and 31! Each successive pair (1, 2); (2, 3);
(3, 5);. . . , seems to be a “basis” for the values of g(n) for a certain range of n (this occurs because of the
simplifications involved in the analysis above).

(a, b) n for which (a, b)
is best basis

(2, 3) 1 ≤ n ≤ 2
(3, 5) 3 ≤ n ≤ 8

(5, 13) 9 ≤ n ≤ 24
(13, 31) 25 ≤ n ≤?

So, in fact, the result about 13 and 31 should not surprise us.

To end with, I will leave the interested reader (if there are any) with a few conjectures. I think
these are all true, but very difficult to prove!

1. Let h(n) be the highest member of the sequence n, T (n), T 2(n),. . . . It is clear that lim(h(n)
n

) = 1,

by taking n = 2k, and that lim(h(n)
n

) = ∞, by taking n = 2k − 1; then T 2k(n) = 3k − 1. Does

lim( 1
N

∑N

1
h(n)

n
) exist?

2. Given k ∈ N, does there exist n for which f(n) = f(n + 1) = · · · = f(n + k)?

3. Set

m(n) =

{

1, if f(n) = f(n + 1),
0, otherwise

Does lim( 1
n

∑N

1 m(n)) exist and if so, what is it?

4. Does lim( 1
N log N

∑N

1 f(n)) tend to a finite non-zero limit?

The author would be delighted to hear of progress made on any of these problems!
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This paper appeared in Eureka, the journal of the Archimedeans (the undergraduate mathematical
society at the University of Cambridge), in 1989, when I was a second-year undergraduate. Looking back
at it now (2005), I’m rather embarrassed by the poor quality of the writing. There are errors too; the
second theorem is false if (a, b) > 1 – in this case, we can take k to be any rational with denominator
(a, b). Of course, we only use the theorem for (a, b) = (13, 31), so all the conclusions are fine.
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