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Abstract

We study generalisations to totally real fields of the methods origi-
nating with Wiles and Taylor-Wiles ([32], [31]). In view of the results
of Skinner-Wiles [26] on elliptic curves with ordinary reduction, we focus
here on the case of supersingular reduction. Combining these, we then ob-
tain some partial results on the modularity problem for semistable elliptic
curves, and end by giving some applications of our results, for example
proving the modularity of all semistable elliptic curves over Q(

√

2).

1 Introduction

Let E denote an elliptic curve over a totally real number field F . We say that
E is modular if there is a Hilbert modular form f over F of parallel weight
2 (i.e., the corresponding automorphic representation has weight 2 at every
infinite place) such that the Galois representation associated to E via its ℓ-adic
Tate module is isomorphic to an ℓ-adic representation associated to f (see [2]
and [28]).

The approach is now standard, and originated in [32] and [31]; one considers
the case ℓ = 3, uses the Langlands-Tunnell Theorem to show that the reduc-
tion ρE,3 is modular, and then proves that every (suitably constrained) lift to
characteristic 0 is modular.

Historically, the easier case has been where ρE,3 is irreducible. In this case,
the deformation theory is now well understood, and this was the only case
needed by Wiles and Taylor-Wiles ([32], [31]). Over totally real fields, Fujiwara
circulated a manuscript [11] some years ago, proving an important generalisa-
tion of the method of Taylor-Wiles, and announcing a proof of the modularity
of certain elliptic curves over totally real fields. However, there are several hy-
potheses appearing in his main theorem which we hope partially to eliminate in
this work. Subsequently, Skinner and Wiles [26] have proven the modularity in
many ‘nearly ordinary’ cases.

In the case where ρE,3 is reducible, Skinner and Wiles [25] have developed
new techniques to demonstrate modularity of elliptic curves (and more general
Galois representations) over totally real fields, although these results depend on
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certain hypotheses on cyclotomic extensions of F . Since the first version of this
article was written (2002-3), Kisin has also found stronger results (see [14], [15]).

Reduction to the semistable case

We first remark that the modularity of all elliptic curves over totally real fields
may be reduced to proving the modularity of all semistable elliptic curves
over totally real fields. The argument is simple; by an explicit version of the
semistable reduction theorem (see, for example, [29], Lemma 2.2), an elliptic
curve E over a totally real field F attains semistable reduction over a finite
soluble totally real Galois extension F ′/F . (Note that F ′/F will be ramified
at any prime of F at which E has additive reduction.) The modularity of E/F

then follows from the modularity of E/F ′ using base-change techniques. This
argument is well-known to experts, so we omit it here.

For this reason, we restrict attention to semistable curves, and try to prove
modularity. In view of some of the applications in mind, we focus in this pa-
per on the easiest case, where the ramification conditions on the field are as
strong as possible, but the methods should apply more generally. Because of
the results already obtained in the reducible and ordinary cases, we focus on
the supersingular case in this paper.

Applications

As we are able to prove the modularity of more elliptic curves than was previ-
ously known, we can therefore improve certain results in the literature. Follow-
ing Wiles’s methods ([32]), we try to find fields for which we can prove mod-
ularity of all semistable curves. Wiles ([32], chapter 5) uses a switch between
the primes 3 and 5, which depends on the finiteness of X0(15)(Q); however
X0(15)(F ) will generally not be finite. Other restrictions on the field also be-
come apparent in generalising directly his methods. However, we are able to
prove modularity of all semistable elliptic curves for the quadratic fields Q(

√
2)

and Q(
√

17). That we can prove such results for the first of these fields is a
piece of good fortune; the first author and Paul Meekin ([12]) have shown that
a generalisation of Fermat’s Last Theorem to Q(

√
2) would follow from such a

result. They also show that Q(
√

2) is the only real quadratic field for which an
implication of the form ‘modularity implies Fermat’ can be derived directly.

Notation

The absolute Galois group of a field F is written either as Gal(F/F ) or GF . The
separable algebraic closure of F is denoted by F . Given an extension of fields
K ⊃ F and some representation ρ : GF → GL2(∗), we denote the restriction of
ρ to the absolute Galois group of K by either ρ|GK or, simply, by ρ|K . If F is a
number field, we denote the decomposition and inertia groups at a place v by
Dv and Iv respectively.

Throughout, ℓ is an odd prime. We denote the ℓ-adic cyclotomic character
by ǫℓ, and its reduction, the mod ℓ cyclotomic character, by ǫℓ. We denote by
ω2 the second fundamental character of Qℓ. Recall that ω2 : Iℓ −→ F×ℓ2 is the
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unique character of the inertia subgroup Iℓ given by the rule

τ −→ τ(ℓ1/(ℓ2−1))

ℓ1/(ℓ2−1)
.

The notation suppresses the dependence on ℓ, and it would be more appropriate
to write ω2,ℓ instead; the context should be generally clear. One should recall
that the notion of fundamental character is not functorial; the restriction of ω2

to a local inertia group Iv is not the second fundamental character of Fv when
the ramification degree of Fv/Qℓ is greater than 1. We remark that there is
an injection F×ℓ2 →֒ GL2(Fℓ); it follows that we can view ω2 as a 2-dimensional
representation Ω2 over Fℓ. This representation is irreducible over Fℓ, but if we
extend scalars to a coefficient field of even degree over Fℓ, then Ω2 becomes
reducible, isomorphic over this quadratic extension to the direct sum of the
characters ω2 and ωℓ

2.
For an elliptic curve E over a field F, we denote by E[n] the kernel of the

multiplication by n map E
×n→ E. If n is coprime to the characteristic of F,

ρE,n : GF −→ AutE[n](F ) ∼= GL2(Z/nZ)

is the mod n representation. If ℓ is a prime different from the characteristic of
F , we set

ρE,ℓ : GF −→ lim
←

AutE[ℓn](F ) ∼= GL2(Zℓ).

Summary of results

Let F be a totally real number field, and let ℓ be an odd prime. Suppose that
for all v|ℓ, the ramification index of Fv/Qℓ is at most ℓ−1. Consider continuous,
irreducible representations

ρ : Gal(F/F ) −→ GL2(Qℓ)

with determinant the ℓ-adic cyclotomic character, and having the same abso-
lutely irreducible residual representation ρ. We assume that all Artinian quo-
tients of ρ are finite flat at primes above ℓ, and we assume further that

ρ|Iv ∼ Ω2|Iv for every v|ℓ

where Ω2 is the second fundamental character of Qℓ, as in the notation section
above, regarded as a 2-dimensional representation – as our coefficient field has
residue field containing Fℓ2 , the representation splits as ω2 ⊕ ωℓ

2. This is the
form of the local Galois representations associated to an elliptic curve with
good supersingular reduction at v, where Fv is unramified over Qℓ. (If Fv is not
unramified, however, the local Galois representation may take a different form;
see section 7 for an example.) The main applications of the results of the paper
will be to such elliptic curves.

Our main result is then:

Theorem 1.1 Let ρ be a representation of the above form. Suppose that ρ has
a modular lift which is finite flat at primes above ℓ. Assume that

ρ|Gal(F/F (ζℓ))

is absolutely irreducible, and furthermore assume that
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• if ℓ = 5 and Proj ρ|Gal(F/F (ζℓ))
∼= A5 then [F (ζℓ) : F ] = 4.

Then ρ is also modular.

We give two applications of the above. The first relates to Serre’s conjecture
for mod 7 representations; we extend the result in [17], and show that:

Theorem 1.2 Let ρ : Gal(Q/Q) −→ GL2(F7) be an absolutely irreducible, con-
tinuous, odd representation. Suppose that the projective image of inertia at 3
has odd order and that the determinant of ρ restricted to the inertia group at 7
has even order. Then ρ is modular.

This theorem has been used by Dieulefait and the second author [8] to give
a new criterion for the modularity of rigid Calabi-Yau threefolds. Of course, it
is largely subsumed within recent work of Khare and Wintenberger; however,
we need no hypothesis at 2.

Our second application relates to the modularity of elliptic curves over totally
real fields. For general totally real fields, we prove modularity subject to quite a
few restrictions. For the full result, see section 9. A particularly neat corollary
is the following.

Theorem 1.3 Every semistable elliptic curve over Q(
√

2) is modular.

This has implications for the study of certain Diophantine equations, and no-
tably the Fermat equation, over Q(

√
2) (see [12]).

2 Local deformations and cohomology groups

Our objective in this section is to give good upper bounds on the size of certain
local cohomology groups. We do this for representations of a certain shape
(which can be achieved after an unramified base change). But before that, we
begin by setting out our notation. Apart from ℓ being the residue characteristic
and λ being a uniformizer (instead of p and π), our choice of notation is meant
to be consistent with [3].

Throughout this section, we fix a finite field k of characteristic ℓ ≥ 3. We
denote by A its Witt ring W (k) and by K the fraction field of A. We fix a finite
totally ramified Galois extension K ′ of K and denote by A′ its ring of integers.
We assume that the absolute ramification index e = [K ′ : K] is less than or
equal to ℓ− 1. The reason for this is that there is then a good notion of Honda
system associated to group schemes. We also fix throughout a uniformizer λ
such that λe = ǫℓ with ǫ ∈ A× (as K ′ is a tamely ramified extension). Write m

for the maximal ideal of A′.
We denote by σ the Frobenius automorphism of A, and byDk the Dieudonné

ring. Recall that Dk is the A-algebra generated by F and V subject to the usual
relations FV = ℓ = V F , Fα = σ(α)F, V α = σ−1(α)V (for α ∈ A). If there is
no cause for confusion, we will abbreviate Dk to simply D.

Various tensor products appear in this section. The unspecified − ⊗ − will
simply mean −⊗Zℓ

−.
We shall be working with finite Honda systems over A′. For the various

properties, see Conrad ([3] and [4]).
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We now fix a second finite field F of characteristic ℓ and a continuous repre-
sentation

ρ : GK′ −→ GL2(F).

We will shortly impose a further restriction, but for the moment we assume
that the representation is finite—that is, there is a finite flat group scheme
over A′ whose associated Galois module (from the generic fibre) gives precisely
our representation ρ. This allows us to introduce certain cohomology groups
H1

f (GK′ , adρ) and H1
f (GK′ , ad0ρ). We recall the definitions (see [6] for details):

elements of H1
f (GK′ , adρ) are the deformations of ρ to F[ǫ]/(ǫ2) which are finite,

and H1
f (GK′ , ad0ρ) is the subspace of H1

f (GK′ , ad ρ) with determinant (of the
deformation) equal to the determinant of ρ.

We now impose a restriction on the shape of ρ:

Assumption 2.1 ρ is equivalent to Ω2|GK′ .

Let M be the Dk ⊗ F-module

(k ⊗ F)e1 ⊕ (k ⊗ F)e2

with F and V actions given by

F (e1) = 0, F (e2) = e1;
V (e1) = 0, V (e2) = −e1.

(To be more precise, these give the action on our basis elements which one then
extends Frobenius semi-linearly.) Let L be the subspace (k⊗F)e2. Then (L,M)
is the finite Honda system over A associated to Ω2|GK . This follows, after base
change (see Section 4 of [3]), from the description of the Honda system over Zℓ

associated to Ω2. (This is presumably well known, but a proof is given in the
appendix.) We reserve (L,M) for this particular Honda system throughout.

By the results of [3], calculating H1
f (GK′ , adρ) is the same as calculating

extensions of (L,M) by itself in the category of finite Honda systems over A′.
As a first step to this calculation, we investigate the extensions of M by itself
in the category of Dk ⊗ F modules.

We begin with a technical lemma which enables us to reduce calculations to
one of linear algebra.

Lemma 2.2 Let R be a ring with finite cardinality. If

0 −→ Rm −→ U −→ Rn −→ 0

is an exact sequence of R−modules, then U is free and isomorphic to Rn+m.

Proof. The exact sequence implies that U can be generated by n+m elements.
Hence there is a surjective R-module homomorphism Rn+m

։ U. As R has
finite cardinality, we get Rn+m ∼= U. �

Proposition 2.3 The group of extensions Ext1Dk⊗F(M,M) is (non-canonically)
isomorphic as an F-vector space to

• (k ⊗ F) ⊕ (Fℓ ⊗ F) if the degree [k : Fℓ] is odd, and

• (k ⊗ F) ⊕ (Fℓ2 ⊗ F) if the degree [k : Fℓ] is even.
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Proof. By Lemma 2.2, we can certainly take any extension class, as an A⊗ F
module, to be

M ⊕M =
(
(k ⊗ F)(e1, 0) ⊕ (k ⊗ F)(e2, 0)

)
⊕

(
(k ⊗ F)(0, e1) ⊕ (k ⊗ F)(0, e2)

)
.

We need to specify the actions of F and V . In order to do this, we write down
matrices using the above choice of basis and compute (remembering to keep
track of Frobenius semi-linearity).

To begin with, we can write

F =




0 1 f1 f2
0 0 f3 f4
0 0 0 1
0 0 0 0


 and V =




0 −1 v1 v2
0 0 v3 v4
0 0 0 −1
0 0 0 0


 .

Since FV = V F = ℓ = 0, we must have the following equalities:

(
0 1
0 0

) (
σ(v1) σ(v2)
σ(v3) σ(v4)

)
+

(
f1 f2
f3 f4

) (
0 −1
0 0

)
= 0

(
0 −1
0 0

) (
σ−1(f1) σ−1(f2)
σ−1(f3) σ−1(f4)

)
+

(
v1 v2
v3 v4

) (
0 1
0 0

)
= 0

Multiplying out, we find that

f3 = v3 = 0, and f1 = σ(v4), f4 = σ(v1).

We now reduce the number of variables further by applying appropriate
k ⊗ F-linear automorphisms of M ⊕M. Let A be the endomorphism




1 0 a1 a2

0 1 a3 a4

0 0 1 0
0 0 0 1


 .

To calculate AFA−1, we need to calculate

(
a1 a2

a3 a4

) (
0 1
0 0

)
−

(
0 1
0 0

) (
σ(a1) σ(a2)
σ(a3) σ(a4)

)
+

(
f1 f2
0 f4

)

which is (
−σ(a3) a1 − σ(a4)

0 a3

)
+

(
f1 f2
0 f4

)
.

We can thus assume that f4 = f2 = 0, which implies that v1 = 0. Under this
assumption, our choice of A is then restricted to

a3 = 0 and a1 = σ(a4).

To calculate AV A−1, we need to compute

(
a1 a2

0 a4

) (
0 −1
0 0

)
−

(
0 −1
0 0

) (
σ−1(a1) σ−1(a2)

0 σ−1(a4)

)
+

(
0 v2
0 v4

)
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which is (
0 −a1 + σ−1(a4)
0 0

)
+

(
0 v2
0 v4

)
.

Since we have a1 = σ(a4), our choice v2 ∈ k ⊗ F can further be restricted to a
choice of representative of an element of

k ⊗ F
(σ2 − 1)(k ⊗ F)

,

while v4 can be chosen to be an arbitrary element of k ⊗ F. The proposition
then follows. �

Theorem 2.4 The dimension of H1
f (GK′ , adρ) as an F-vector space is at most

• [K ′ : Qℓ] + 2 if [k : Fℓ] is even, and

• [K ′ : Qℓ] + 1 if [k : Fℓ] is odd.

Proof. As in [4], we have an F-linear map of vector spaces

t : H1
f (GK′ , adρ) −→ Ext1(M,M).

In words, the map t is just ‘take Dieudonné module of the special fibre of the
associated finite flat group scheme’. We already have a bound for the Ext-group,
thanks to Proposition 2.3. We now start analysing the kernel of the above linear
map.

We begin by describing the structure of the A′-module MA′ . We recall the
definition (due to Fontaine), and refer to [3] for the explicit description we need
(see Definition 2.1 of [3]). As already set out in the beginning of this section,
we have a fixed uniformizer λ of A′ satisfying λe = ǫℓ with ǫ ∈ A×.

We have the standard identification of M (1) = (A, σ) ⊗A M with M as an
abelian group and twisted A-action. The Dieudonné module structure then
gives us two A-linear maps

F0 : M (1) −→M and V0 : M −→M (1).

(As in [3], we shall not abbreviate these to F and V.) There are A′-linear maps

FM : A′ ⊗A M
(1) −→ A′ ⊗A M and V M : m ⊗A M −→ ℓ−1m ⊗A M

(1)

obtained simply by tensoring with the identity map onA′ and the map x→ ℓ−1x
respectively.

The A′-module MA′ is then the quotient of

(A′ ⊗A M) ⊕ (ℓ−1m ⊗A M
(1))

by the submodule

{(
φM

0 (u) − FM (w), φM
1 (w) − V M (u)

)
| u ∈ m ⊗A M,w ∈ A′ ⊗A M

(1)
}

where φM
0 , φM

1 are the maps

φM
0 : m ⊗A M −→ A′ ⊗A M and φM

1 : A′ ⊗A M (1) −→ ℓ−1m ⊗A M
(1)
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induced by the inclusions m →֒ A′ and A′ →֒ ℓ−1m.
A basis of A′ ⊗A M as a free k ⊗ F-module is given by

λi ⊗ ej , i = 0, . . . e− 1, j = 1, 2.

For ℓ−1m ⊗A M
(1), we have the k ⊗ F basis

λ−i ⊗ ej , i = 0, 1, . . . e− 1, j = 1, 2.

Note that for i ≥ 1, the elements (λi ⊗ e1, 0) are trivial in MA′ . Indeed, we
have

(λi ⊗ e1, 0) =
(
φM

0 (λi ⊗ e1) − FM (0), 0 − V M (λi ⊗ e1)
)
.

Furthermore, for i ≥ 1, we have

(0, λ−i ⊗ e1) = (0, 0 − V M (λe−i ⊗ e2))

= (−λe−i ⊗ e2, 0).

Note also that

(0, 1 ⊗ e1) =
(
φM

0 (0) − FM (1 ⊗ e1), φ
M
1 (1 ⊗ e1) − V M (0)

)
, and

(0, 1 ⊗ e2) = (1 ⊗ e1, 0) +
(
φM

0 (0) − FM (1 ⊗ e2), φ
M
1 (1 ⊗ e2) − V M (0)

)
.

Thus any element in MA′ can be expressed as an k ⊗ F-linear combination of

(1 ⊗ e1, 0), (λi ⊗ e2, 0) and (0, λ−m ⊗ e2)

with i = 0, 1, . . . e − 1 and m = 1, . . . e − 1. Since the A′-length of MA′ is the
same as the A-length of M times e (Lemma 2.2 of [3]), we deduce that the set
of generators above is in fact a basis.

Obviously, the A′-submodule of MA′ obtained by taking the A′-span of L is
precisely A′ ⊗A A ⊗ F(e2, 0). Now let (L′,M ′) be the finite Honda system for
an element in the kernel of t. Since M ′ = M ⊕M as a Dk ⊗ F-module, we can
write M ′A′ = MA′ ⊕MA′ . We must therefore have, by length considerations,

L′ = (A′ ⊗A A⊗ F)((e2, 0), 0) + (A′ ⊗A A⊗ F)(x, (e2, 0))

for some x ∈ MA′ . From our description of a basis of MA′ , it follows that we
can take

x = a(1 ⊗ e1, 0) + y

with a ∈ k ⊗ F and y an element in the A ⊗ F-span of (0, λ−m ⊗ e2), m =
1, . . . e− 1. By applying a Dk ⊗ F-linear automorphism of M ⊕M of the type




1 0 0 ∗
0 1 0 0
0 0 1 0
0 0 0 1


 ,

we can assume that a = 0. Hence the kernel has dimension, as an F-vector space,
at most (e− 1)[k : Fℓ]; and this proves the theorem. �

Corollary 2.5 The dimension of H1
f (GK′ , ad0ρ) as an F-vector space is at most

• [K ′ : Qℓ] + 1 if [k : Fℓ] is even, and

• [K ′ : Qℓ] if [k : Fℓ] is odd.
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3 The deformation problem

We now set up the deformation problem we want to study. We begin by fixing
a totally real extension F of even degree (over Q), an odd prime ℓ, a finite field
k of characteristic ℓ, and a continuous homomorphism

ρ : GF −→ GL2(k)

which is absolutely irreducible and odd. We assume that the ramification degree
of F at all primes over ℓ is less than or equal to ℓ− 1. Further, we suppose that
ρ has the following properties:

• The determinant of ρ is the mod ℓ cyclotomic character.

• ρ restricted to the absolute Galois group of F (ζℓ) is absolutely irreducible.

• If ℓ = 5 and Proj ρ|Gal(F/F (ζℓ)) then [F (ζℓ) : F ] = 4.

• Let x be a prime of F above ℓ and let Ix the inertia group of Fx. Then

ρ|Ix ∼ Ω2|Ix

where Ω2 is the second fundamental character.

We assume that the characteristic polynomial of ρ(σ) is split over k for any
σ ∈ GF . We fix a finite extension K of Qℓ with ring of integers O, maximal
ideal (λ) and residue field k.

Let CO be the category of complete, local, Noetherian O-algebras with
residue field k. Given (A,mA) ∈ CO, we call a continuous homomorphism

ρA : GF −→ GL2(A)

a finite flat deformation of ρ if

• ρA is odd and unramified outside finitely many primes,

• ρA (mod mA) = ρ,

• ρA is finite flat at primes v|ℓ (i.e., the restriction of ρA to GFv , for v|ℓ,
has the property that for all n ≥ 1, the Fv-group scheme associated to the
GFv -module ρA mod mn

A is the generic fibre of a finite flat group scheme
over OF,v), and

• ρA has determinant the ℓ-adic cyclotomic character.

Two such deformations are said to be strictly equivalent if one can be conjugated
to the other by a matrix which reduces to the identity modulo the maximal ideal
mA.

Now let Σ be a finite set of (finite) primes of F not containing any places
over ℓ (and it could be empty). We say a finite flat deformation is of type Σ
if the representation is unramified outside primes in Σ and outside the set of
primes where ρ is ramified. There is then a universal finite flat deformation of
ρ of type Σ which we shall denote by (RΣ, ρΣ).

Given a finite flat deformation ρ : GF → GL2(O/λn) of type Σ, one defines
the Galois cohomology group H1

Σ(GF , ad0ρ) to be the deformations of ρ to
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(O/λn)[ǫ]/ǫ2 which are of type Σ. Recall that ad0ρ can be identified with the
group of 2 × 2 trace zero matrices over O/λn with GF action via conjugation
(by ρ). The cohomology group H1

Σ(GF , ad0ρ) is then precisely H1
LΣ

(GF , ad0ρ)
where the local conditions LΣ = {Lx} are given by:

• Lx = H1(GFx/Ix, ad0ρIx) if x ∤ ℓ, x /∈ Σ and ρ is unramified at x,

• Lx = H1(GFx , ad0ρ) if x ∤ ℓ, and either x ∈ Σ or ρ is ramified at x,

• Lx = H1
f (GFx , ad0ρ) if x|ℓ.

The universal deformation ring RΣ can be topologically generated as an
O-algebra by dimkH

1
Σ(GF , ad0ρ) elements. If π : RΣ ։ O is an O-algebra

homomorphism with corresponding representation ρ, we have a canonical iso-
morphism

Hom
(
kerπ/(kerπ)2,K/O

) ∼= H1
Σ(GF , ad0ρ⊗K/O).

The pairing ad0ρ× ad0ρ→ k obtained by taking the trace is perfect. Using
this pairing, one defines H1

Σ(GF , ad0ρ(1)) to be given by local conditions {L⊥x }
where L⊥x is the orthogonal complement to Lx with respect to the perfect pairing

H1(GFx , ad0ρ) ×H1(GFx , ad0ρ(1)) −→ H2(GFx , k(1)) ≃ k.

From now onwards, we assume the following:

Assumption 3.1 For each prime x of F dividing ℓ, the Honda system associ-
ated to ρ|Fx has the particular form specified in Assumption 2.1.

Now we make some calculations of these cohomology groups, using similar
arguments to those of Wiles.

Theorem 3.2 As an O-algebra,

dimkH
1
Σ(GF , ad0ρ(1)) +

∑

x∈Σ

dimkH
0(GFx , ad0ρ(1))

elements are sufficient to generate the universal deformation ring RΣ topologi-
cally.

Proof. This is almost exactly the same as the proof of Corollary 2.43 in [6].
Using Theorem 2.19 of [6] (a full proof is given in [18], p.440), one finds that
dimkH

1
Σ(GF , ad0ρ) is the sum of terms:

• dimkH
1
Σ(GF , ad0ρ(1));

•
∑

x|ℓ dimkH
1
f (GFx) −

∑
x|ℓ dimkH

0(GFx) −
∑

x|∞ dimkH
0
Σ(GFx), where

H∗∗ (GFx) means the cohomology group H∗∗ (GFx , ad0ρ). This term is less
than or equal to 0 by Corollary 2.5.

• dimkH
1(GFx , ad0ρ)−dimkH

0(GFx , ad0ρ), which equals dimkH
0(GFx , ad0ρ(1)),

for each x ∈ Σ.

�
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Theorem 2.49 of [6] still holds in our present setting; the proof, with trivial
modifications, remains valid. The result being of significant importance, we give
a brief sketch of the proof.

Theorem 3.3 Let r = dimkH
1
∅ (GF , ad0ρ(1)). For every positive integer n, we

can find a finite set primes Σn such that the following hold:

• Every prime in Σn has norm congruent to 1 modulo ℓn;

• The sets Σn all have size equal to r;

• If x ∈ Σn, then ρ is unramified at x and the Frobenius (at x) has distinct
eigenvalues;

• The universal deformation ring RΣn can be topologically generated as an
O-algebra by r elements.

Proof. As in the proof of Theorem 2.49 of [6], one reduces the result to showing
that for ψ ∈ H1

∅ (GF , ad0ρ(1)) − {0}, we can find a σ ∈ GF such that

• σ acts trivially on F (ζℓn),

• ad0ρ(σ) has an eigenvalue not equal to 1, and

• ψ(σ) /∈ (σ − 1)ad0ρ(1).

(We remark that Theorem 3.2 is crucial in getting the right number of generators
from this reduction.)

Let Fn be the minimal extension of F (ζℓn) on which ad0ρ acts trivially. The
degree of the extension F1/F0 is at most ℓ−1; the degree [Fn : F1] is of ℓ-power
order. It follows that

H1(Gal(Fn/F0), ad0ρ(1))GF ∼= Hom(Gal(Fn/F1), ad0ρ(1)GF )

is trivial (since ρ restricted to the absolute Galois group of F (ζℓ) is absolutely
irreducible).

Now consider H1(Gal(F0/F ), ad0ρ(1)GF0 ). If this is non-trivial, the order
of Gal(F0/F ) must be divisible by ℓ and Gal(F0/F ) must have Gal(F (ζℓ)/F )
as a quotient. Note that Gal(F0/F ) is isomorphic to the projective image of
ρ, and so from the list in Theorem 2.47 of [6] we see that the case ℓ = 5 and
Proj ρ|Gal(F/F (ζℓ)) cannot occur. In the other cases the projective image of ρ

is a semi-direct extension of PSL2(Fℓr) by a group of order prime to ℓ, and so
H1(Gal(F0/F ), ad0ρ(1)) again vanishes on applying Lemma 2.48 of [6].

A straightforward application of the inflation-restriction sequence then im-
plies that the group H1(Gal(Fn/F ), ad0ρ(1)) is trivial, and it follows that
ψ(GFn) is non-trivial.

Now ρ restricted to GF (ζℓn ) is still absolutely irreducible. Thus the order
of Gal(Fn/F (ζℓn)) is not a power of ℓ. The group Gal(Fn/F (ζℓn)) also acts
(non-trivially) on {0} 6= ψ(GFn) ⊂ ad0ρ. Therefore we can find a non-trivial
element g ∈ Gal(Fn/F (ζℓn)) of order prime to ℓ and fixing a non-zero element
of ψ(GFn). Let g̃ ∈ GF (ζℓn ) be a lift of g. As ψ(GFn) 6⊂ (g − 1)ad0ρ(1), we can
find an h ∈ GFn such that

ψ(hg̃) = ψ(h) + ψ(g̃) /∈ (g̃ − 1)ad0ρ(1).

11



Finally, take σ = hg̃. Then σ acts trivially on F (ζℓn), and (σ− 1)ad0ρ(1) =
g̃−1)ad0ρ(1) 6⊃ ψ(σ). Since the order of σ is prime to ℓ (and is not 1), it follows
that ad0ρ(σ) has an eigenvalue not equal to 1. �

4 Hecke algebras and ℓ-adic modular forms

We fix a totally real field F of even degree and an odd rational prime ℓ. We write
D for the division algebra with centre F and ramified exactly at the set of infinite
places of F . Write Z for the algebraic group defined by Z(R) = (D ⊗F R)× if
R is an F -algebra. We also fix the following:

• A maximal order OD, and isomorphisms OD,x
∼= M2(OF,x) for all finite

places x of F. These isomorphisms give us an identification of GL2(A∞F )
with (D ⊗Q A∞)×;

• A uniformiser ̟x of OF,x for each finite place x.

We write A for a topological Zℓ-algebra which is one of the following: a finite
extension of Qℓ, the ring of integers in such an extension, or a quotient of such
a ring of integers.

Definition 4.1 For a compact open subgroup U ⊂ (D ⊗Q A∞)× and a topo-
logical ring A as above, we define SA(U) to be the space of continuous functions

f : D×\(D ⊗Q A∞)×/U.Z(A∞F ) −→ A.

We define SA to be the direct limit of SA(U) as U varies over open compact
subsets of (D ⊗Q A∞)×.

For a compact open U , the finite double coset decomposition

(D ⊗Q A∞)× =
∐

D×tiU.Z(A∞F )

shows that

SA(U) −→
⊕

i

A

f −→ (f(ti))i

is an isomorphism. In particular, for any A-algebra B, we have

SA(U) ⊗A B ∼= SB(U).

We denote by [ti] the function in SA(U) which is 1 on D×tiU.Z(A∞F ) and 0
elsewhere.

Definition 4.2 For an ideal n of OF and quotients Hx of (OF,x/nx)×, we set
H =

∏
xHx. We define UH(n) to be the compact open subgroup

∏
x UH(n)x ⊂

(D ⊗Q A∞)× where

UH(n)x =

{(
a b
c d

)
∈ GL2(OF,x) ∼= O×D,x

∣∣∣∣ c ∈ nx, ad
−1 = 1 in Hx

}
.
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Now let n and Hx be as in the above definition. We recall the definitions of
the various Hecke operators on SA(UH(n)):

• If x does not divide ℓn, we denote the Hecke operators

[
UH(n)

(
̟x 0
0 1

)
UH(n)

]
and

[
UH(n)

(
̟x 0
0 ̟x

)
UH(n)

]

by Tx and Sx respectively.

• If x divides n, we set

〈h〉 =

[
UH(n)

(
h̃ 0
0 1

)
UH(n)

]

for h ∈ Hx and h̃ a choice of lift of h to O×F,x.

• If x divides n, the Hecke operators

[
UH(n)

(
̟x 0
0 1

)
UH(n)

]
and

[
UH(n)

(
1 0
0 ̟x

)
UH(n)

]

are denoted by U̟x and V̟x respectively. We also denote by Sx the
Hecke operator [

UH(n)

(
̟x 0
0 ̟x

)
UH(n)

]
.

Definition 4.3 Let n, Hx and A be as in the preceding paragraphs. We de-
fine the Hecke algebra TA(UH(n)) to be the A-subalgebra of EndA(SA(UH(n)))
generated by Tx (for x not dividing ℓn) and U̟x (for x|n but not dividing ℓ).

A maximal ideal m of TA(UH(n)) is said to be Eisenstein if it contains Tx−2
and Sx − 1 for all but finitely many primes with Nx (mod ℓ) = 1.

The Hecke algebra TA(UH(n)) is always commutative. Also, TZℓ
(UH(n)) is

semi-local and ℓ-adically complete, and we have the identification

TZℓ
(UH(n)) ∼=

∏
TZℓ

(UH(n))m

where the product is over all maximal ideals m.
If either ℓ is invertible in A, or if Q(ζ + ζ−1) 6⊂ F where ζ is a primitive ℓth

root of unity, we have a perfect pairing on SA(UH(n)) defined by

(f1, f2)UH (n) =
∑

i

f1(ti)f2(ti)

(
#
UH(n).Z(A∞F ) ∩ t−1

i D×ti
F×

)−1

where
(D ⊗Q A∞)× =

∐
D×tiUH(n).Z(A∞F ).

We call this the standard pairing. The Hecke operators are not necessarily self-
adjoint with respect to this pairing; the general behaviour of operators is given
by

([UH′(n′)gUH(n)] f1, f2)UH′ (n′) =
(
f1,

[
UH(n)g−1UH′(n′)

]
f2

)
UH(n)

.
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Now fix a finite set of primes Σ, none lying above ℓ, and let nΣ =
∏

x∈Σ x
2.

Let K be a finite extension of Qℓ which contains all embeddings F →֒ Qℓ, and
let O be its ring of integers. We fix a decomposition

(D ⊗Q A∞)× =
∐

D×giU1(nΣ).Z(A∞F ) ∐
∐

D×hiU1(nΣ).Z(A∞F )

where the gi’s and hi’s are such that

ℓ 6
∣∣∣∣#
U1(nΣ).Z(A∞F ) ∩ g−1

i D×gi

F×
and ℓ

∣∣∣∣#
U1(nΣ).Z(A∞F ) ∩ h−1

i D×hi

F×
.

We denote by SO(U1(nΣ))∗ the O-submodule of SO(U1(nΣ)) generated by the
[gi] and ℓ[hi].

Lemma 4.4 Keep the notation of the preceding paragraph, and suppose that
the ramification index at all primes over ℓ of F is at most ℓ− 1. Then ℓ exactly
divides the order of (U1(nΣ).Z(A∞F ) ∩ h−1

i D×hi)/F
×.

Proof. One easily reduces the statement to showing that finite subgroups
of D× having ℓ-power order must have order exactly 1 or ℓ (use the two exact
sequences in the proof of Lemma 1.1 of [30]). Further, there can be a non-trivial
finite subgroup of ℓ-power order if and only if ζ + ζ−1 is in F. Since any group
of order ℓ2 is abelian, the only possible non-trivial finite subgroup has to have
order exactly ℓ. �

Lemma 4.5 With the notation as above, let f ∈ SO(U1(nΣ)). Then Tx(f) ∈
SO(U1(nΣ))∗ for any prime x /∈ Σ with Nx ≡ −1 (mod ℓ).

Proof. Let U (0) be the subgroup of U1(nΣ) consisting of elements whose xth

component is congruent to

(
∗ 0
∗ ∗

)
(mod ̟x). Let ζ ∈ h−1D×h∩U1(nΣ).Z(A∞F )

have order exactly ℓ in the quotient (h−1D×h ∩ U1(nΣ).Z(A∞F ))/F×. We need
to compute Tx(f)(h) and check that it is a multiple of ℓ. Starting with a double

coset decomposition given by
∐ℓ−1

i=0 ζ
i ∗ U (0) and using the fact that ζ /∈ U (0),

we get a disjoint decomposition

U1(nΣ) =

ℓ∐

i=1

(Nx+1)/ℓ∐

j=1

ζiujU
(0).

This shows that, by index considerations,

U1(nΣ)

(
̟x 0
0 1

)
U1(nΣ) =

ℓ∐

i=1

(Nx+1)/ℓ∐

j=1

ζiuj

(
̟x 0
0 1

)
U1(nΣ).

Since hζi = dih for some di ∈ D×, we have

Tx(f)(h) =

ℓ∑

i=1

(Nx+1)/ℓ∑

j=1

f

(
hζiuj

(
̟x 0
0 1

))

=
ℓ∑

i=1

(Nx+1)/ℓ∑

j=1

f

(
huj

(
̟x 0
0 1

))

= ℓ

(Nx+1)/ℓ∑

j=1

f

(
huj

(
̟x 0
0 1

))
.
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The lemma follows. �

Now we discuss various properties of the modular forms and Hecke operators.

Theorem 4.6 Keeping the assumptions of the two preceding lemmas, we have
the following:

1. The O-module SO(U1(nΣ))∗ is invariant under the action of Hecke oper-
ators.

2. The pairing on SK(U1(nΣ)) induces a perfect pairing

SO(U1(nΣ)) × SO(U1(nΣ))∗ −→ O.

3. Let m be a non-Eisenstein maximal ideal of the Hecke algebra TO(U1(nΣ)).
Then SO(U1(nΣ))m = SO(U1(nΣ))∗

m
. As a consequence, the pairing on

SK(U1(nΣ)) induces a perfect pairing on SO(U1(nΣ))m.

Proof. The first part is easily checked using the given pairing on SK(U1(nΣ)).
The second part follows from Lemma 4.4. The third part is a direct consequence
of Lemma 4.5. �

5 Deformations in the minimal case

In this section, we show that the universal deformation ring in the minimal
case is isomorphic to a Hecke algebra, and we show that these are complete
intersection rings of relative dimension zero over Zp.

Recall that we are given a continuous representation

ρ : GF −→ GL2(k)

satisfying the various properties listed in the beginning of section 3, and also
satisfying Assumption 3.1. In this and the next section, we shall assume the
following additional modularity condition.

Assumption 5.1 Let U0 denote U{1}(n∅). Then we assume that there is a
continuous homomorphism φ : TO(U0) → k with non-Eisenstein kernel which
gives our representation ρ. We write m∅ for the kernel.

Our aim is to show that the natural map R∅ ։ TO(U0)m∅
is an isomorphism of

complete intersection rings.
Fix a finite set of primes Σ of F not dividing ℓ such that for every x ∈ Σ,

we have

• Nx ≡ 1 (mod ℓ),

• ρ is unramified at x and has distinct eigenvalues αx 6= βx.

We denote the maximal ℓ-power quotient of (OF /x)
×, for x ∈ Σ, by ∆x and set

∆Σ =
∏

∆x. We define the following objects (all products are over x ∈ Σ):

1. an ideal nΣ =
∏
x2.
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2. compact open subgroups U0,Σ = U{1}(nΣ) and U1,Σ = U∆Σ(nΣ).

3. an ideal mΣ of either T(U0,Σ) or T(U1,Σ) generated by ℓ and

• Tx − tr ρ(Frobx) for x ∤ ℓnΣ, and

• U̟x − αx for x ∈ Σ.

Note that Lemma 2.1 and Lemma 2.2 of [30] remain true in the present
situation (and we will write them down again in a moment). We also have the
fact that SO(U1,Σ) is an O[∆Σ]-module via h→ 〈h〉. But slight care is required
for the critical Lemma 2.3 and Corollary 2.4 of [30]: it is no longer obvious
that SO(U1,Σ)mΣ is free over O[∆Σ]. Nonetheless, we can still get the ‘patching
modules’ technique of [7] to work.

We first present a trivial reformulation of Theorem 2.1 of [7].

Theorem 5.2 Fix a positive integer r, a finite field k; set A = k[[S1, . . . , Sr]]
and B = k[[X1, . . . , Xr]]. We denote the maximal ideal of A by n. We are
given: a k-algebra R, a non-zero R-module H which is finite dimensional over k.
For each positive integer n, we suppose that we have k-algebra homomorphisms
φn : A → B and ψn : B → R, a B-module Hn and a B-linear homomorphism
πn : Hn → H such that:

• ψn is surjective and ψnφn = 0,

• πn induces an isomorphism between Hn/nHn and H, and

• there is an unbounded sequence of positive integers (an)n≥1 such that
Hn/n

anHn is free over A/nan .

Then R is a complete intersection, and H is free over R.

We now begin analyzing and comparing the O[∆Σ]-module structures of
SO(U0,Σ) and SO(U1,Σ). Denote the augmentation ideal of O[∆Σ] by I∆Σ . Ob-
viously, functions in SO(U0,Σ) are precisely the elements of SO(U1,Σ) which are
invariant under the action of ∆Σ; there is a ‘norm’ map

∑

h∈∆Σ

〈h〉 : SO(U1,Σ)∆Σ −→ SO(U0,Σ),

where the subscript denotes coinvariants.

Proposition 5.3 The norm map
∑

h∈∆Σ

〈h〉 : SO(U1,Σ) −→ SO(U0,Σ)

has kernel I∆ΣSO(U1,Σ) and surjects onto SO(U0,Σ)∗.
The T(U1,Σ)-module 

 ∑

h∈∆Σ[ℓ]

h


SO(U1,Σ)

is free over O[∆Σ/∆Σ[ℓ]]; and the norm map factorizes, in an obvious way, as
the composite of ∑

h∈∆Σ[ℓ]

〈h〉 and
∑

h∈∆Σ/∆Σ[ℓ]

〈h〉.
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Proof. We have a decomposition

(D ⊗Q A∞)× =
∐

D×tiU0,Σ.Z(A∞F ).

For h ∈ ∆Σ, we have a lift h̃ ∈ (A∞F )× which gives the coset decomposition

U0,Σ =
∐

h∈∆Σ

(
h̃ 0
0 1

)
U1,Σ.

There is an obvious transitive action of ∆Σ on this coset decomposition.
For each ti, we define

Stabi =

{
h ∈ ∆Σ

∣∣∣∣D
×tiU1,Σ.Z(A∞F ) = D×ti

(
h̃ 0
0 1

)
U1,Σ.Z(A∞F )

}
.

Obviously, the definition is independent of the representatives ti and depends
only the double coset decomposition. We get the double coset decomposition

(D ⊗Q A∞)× =
∐

i

∐

h∈∆Σ/Stabi

D×ti

(
h̃ 0
0 1

)
U1,Σ.Z(A∞F ).

In particular, we see that the set

⋃

i

{〈h〉[ti] |h ∈ ∆Σ/Stabi}

is a basis for the free O-module SO(U1,Σ).
It is now clear that the image of the map

∑

h∈∆Σ

〈h〉 : SO(U1,Σ) −→ SO(U0,Σ)

is free over O with basis {|Stabi|[ti]}i . The fact that the kernel is the image of
the augmentation ideal is obvious once we show that it is enough to consider
elements in the kernel having the form

x =
∑

h∈∆Σ/Stabi

ah〈h〉[ti] with ah ∈ O and
∑

h∈∆Σ/Stabi

ah = 0.

It suffices to consider such x because we can write x =
∑
xi, where xi lies in

the kernel and has the form |Stabi|(
∑
ah)[ti].

We now show that the image of the norm map is SO(U0,Σ)∗ by proving
that the order of Stabi is equal to the power of ℓ that divides the order of(
t−1
i D×ti ∩ U0,Σ.Z(A∞F )

)
/F×.

We claim that the order of
(
t−1
i D×ti ∩ U1,Σ.Z(A∞F )

)
/F× is not divisible by

ℓ. Indeed, let α ∈ t−1
i D×ti ∩ U1,Σ.Z(A∞F ) be such that αℓ ∈ F×. Fix a place

x ∈ Σ. We can write the x-th component of α ∈ U1,Σ.Z(A∞F ) as uxzx where
zx ∈ Kx and ux ∈ GL2(Ox) satisfies

ux ≡
(
h ∗
0 1

)
(mod ωx)
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with h having order prime to ℓ. Raising ux to the ℓ−th power, one deduces
that ux reduces to the identity mod ωx, and hence that ux is trivial. This then
implies that α ∈ F×.

Let m be the prime to ℓ part of the order of
(
t−1
i D×ti ∩ U0,Σ.Z(A∞F )

)
/F×.

We define a map θ : Stabi −→
(
t−1
i D×ti ∩ U0,Σ.Z(A∞F )

)
/F× as follows: If

h ∈ Stabi, we must have t−1
i dti = hu1a = x (say) for some d ∈ D×, u1 ∈

U1,Σ and a ∈ (A∞F )×. Thus x ∈ t−1
i D×ti ∩ U0,Σ.Z(A∞F ), and we set θ(h) =

xm (mod F×). By the claim established in the previous paragraph, it follows
that θ is a well-defined injective homomorphism from Stabi to the ℓ-primary
part of

(
t−1
i D×ti ∩ U0,Σ.Z(A∞F )

)
/F×. Since by Lemma 4.4 the order of the

ℓ-primary part of
(
t−1
i D×ti ∩ U0,Σ.Z(A∞F )

)
/F× is exactly ℓ or 1, it is then

simple to verify that θ is an isomorphism between Stabi and the ℓ-primary part
of

(
t−1
i D×ti ∩ U0,Σ.Z(A∞F )

)
/F×. It follows that the image of the norm map is

exactly SO(U0,Σ)∗.
The last part of the proposition follows since Stabi ⊂ ∆Σ[ℓ]. �

The following is Lemma 2.2 of [30]. The proof given in [30] works verbatim
in our case (thanks to Theorem 4.6).

Lemma 5.4 There is an isomorphism SO(U0,∅)m∅
→ SO(U0,Σ)mΣ inducing an

isomorphism T(U0,Σ)mΣ → T(U0,∅)m∅
. �

Using the fact that the rings in consideration are semi-local, reduced and
complete (they are finite flat Zℓ-algebras), and Theorem 4.6, we get the follow-
ing:

Corollary 5.5 1. There is an isomorphism SO(U1,Σ)mΣ,∆Σ −→ SO(U1,∅)m∅
.

This isomorphism is compatible with the map on Hecke algebras T(U1,Σ)mΣ →
T(U0,∅)m∅

which sends:

• Tx to Tx for x not dividing ℓnΣ,

• 〈h〉 to 1 for h ∈ ∆Σ, and

• U̟x to Ax for x ∈ Σ where Ax is the unique root of X2−TxX+Nx
in T(U0,∅)m∅

congruent to αx (mod m∅).

2. The surjection SO(U1,Σ)mΣ ։ SO(U1,∅)m∅
given by composing the norm

map with the isomorphism of the preceding lemma factorizes as the com-
posite of

SO(U1,Σ)mΣ,∆Σ ։ HΣ and HΣ −→ SO(U1,∅)m∅

where:

• HΣ is a T(U1,Σ)mΣ-algebra and the maps are compatible with the
algebra structures, and

• HΣ is a free O[∆Σ/∆Σ[ℓ]] module.

�

We apply the above corollary to the sets Σn produced by Theorem 3.3.
Applying the ‘patching modules’ result of Diamond [7] and Fujiwara [11] (The-
orem 5.2 above), we get the following result.
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Theorem 5.6 The natural map

R∅ −→ T(U0)m∅

is an isomorphism of complete intersection rings and the module SO(U0)m∅
is

free over T(U0)m∅
. �

6 Non-minimal level

The proof of the result in the non-minimal case given in [30] remains valid in
our case. We shall only give a sketch. Throughout this section, we keep the
various assumptions (and notation) of the last section.

Fix a homomorphism π∅ : R∅ ։ O. We now let Σ be a finite set of primes of
F not containing any primes above ℓ. We denote by πΣ the surjection RΣ ։ O
obtained by taking the composite of

RΣ ։ R∅ ։ O

where the first map is the one given by the universal property of RΣ and the
second map is π∅. We shall denote the kernel of πΣ by PΣ.

Let nΣ =
∏

x∈Σ x
2, and let UΣ = U{1}(nΣ). Also, let mΣ be the maximal

ideal of TO(UΣ) corresponding to our residual representation ρ. We denote by
TΣ the localization TO(UΣ)mΣ , and write SΣ for the TΣ-module SO(UΣ)mΣ .

We then have the following.

Theorem 6.1 The natural map RΣ ։ TΣ is an isomorphism of complete in-
tersection rings and SΣ is free over TΣ.

To prove the theorem, one needs to check (by Theorem 2.4 of [7]) that the
order of PΣ/P

2
Σ divides the order of

ΩΣ
def
=

SΣ

SΣ[P] ⊕ SΣ[AnnTΣP]
.

A standard computation shows that the order of PΣ/P
2
Σ divides

#
(
P∅/P

2
∅
) ∏

x∈Σ

#
(
O/(1 − Nx)(T 2

x − (1 + Nx)2)O
)
,

and we shall prove that this expression is the order of ΩΣ.
Note that SΣ[PΣ] is a free O-module of rank 1. Fix a perfect symmetric

O-valued O-bilinear pairing { , }Σ on SΣ[PΣ], and let jΣ : SΣ[PΣ] →֒ SΣ be
the natural inclusion. Also, define a pairing 〈 , 〉Σ on SΣ by

〈f1, f2〉Σ = (f1, wΣf2)

where ( , ) is the standard pairing, and wΣ ∈ GL2(A∞F ) ∼= (D ⊗Q A∞)× is the
element defined by

wΣ,x =





identity, if x /∈ Σ,(
0 1
̟2

x 0

)
, if x ∈ Σ.
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This new pairing is perfect, and the Hecke operators are self-adjoint with respect
to 〈 , 〉Σ.

Now let x be a prime not dividing nΣℓ. There is a well-defined map

ix : SΣ −→ SΣ∪{x}

which is obtained from the map sending f ∈ SO(UΣ) to

(Nx)f −
(

1 0
0 ̟x

)
Txf +

(
1 0
0 ̟2

x

)
f ∈ SO(UΣ∪{x}).

Under this map, the image of SΣ[PΣ] is contained in SΣ∪{x}[PΣ∪{x}].We denote

by ĩx the resulting map from SΣ[PΣ] to SΣ∪{x}[PΣ∪{x}].
We then have the following.

• Let i∗x be the adjoint of ix with respect to the pairings 〈 , 〉Σ and 〈 , 〉Σ∪{x}.
The composite i∗x ◦ ix is equal to

Nx(1 − Nx)(T 2
x − (1 + Nx)2).

• ix(SΣ[PΣ]) = SΣ∪{x}[PΣ∪{x}]. This follows from Ihara’s lemma (see
Lemma 3.1 of [30]).

• Let j∗Σ be the adjoint of jΣ with respect to the pairings { , }Σ and 〈 , 〉Σ.
It induces an isomorphism

j∗Σ : ΩΣ
∼−→ SΣ[PΣ]

j∗ΣSΣ[PΣ]
.

• Let ĩx
∗

be the adjoint of ĩx with respect to the pairings { , }Σ and

{ , }Σ∪{x}. It is an isomorphism, and we have ĩx
∗ ◦ j∗Σ∪{x} = j∗Σ ◦ i∗x.

It follows that

#ΩΣ = #Ω∅
∏

x∈Σ

#
(
O/(1 − Nx)(T 2

x − (1 + Nx)2)O
)
.

The result in the minimal case implies that #Ω∅ = #(P∅/P
2
∅), and hence that

#
PΣ

P2
Σ

∣∣∣∣ #ΩΣ.

7 Modularity of Galois representations and el-

liptic curves

We now collect the results of the preceding two sections.
Let F be a totally real, finite extension of Q. Let O be the ring of integers

in a finite extension of Qℓ where ℓ is an odd prime, and let k be its residue field.
We suppose that we are given continuous representations

ρi : GF −→ GL2(O), i = 1, 2

satisfying the following properties:
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• ρi (i = 1, 2) is an odd representation unramified outside finitely many
primes;

• det ρ1 = det ρ2 = ǫℓ where ǫℓ is the ℓ-adic cyclotomic character.

• The residual representations ρi : GF → GL2(k) are equivalent and are
absolutely irreducible. We denote the residual representation by ρ.

Theorem 7.1 With notations as in the preceding paragraph, we make the fol-
lowing assumptions.

• The restriction of ρ to the absolute Galois group of F (ζℓ) is absolutely
irreducible; furthermore, if ℓ = 5 and Proj ρ|Gal(F/F (ζℓ)) then [F (ζℓ) :

F ] = 4.

• (Conditions at ℓ.) Let v be any prime of F dividing ℓ, and let Iv be the
inertia group of Fv. We assume:

1. ρ|Iv ∼ Ω2|Iv , where Ω2 is the second fundamental character of the
inertia group of Qℓ.

2. Let m be the maximal ideal of O, and let ρi,n be the reduction of ρi

modulo mn. Then ρi,n|Fv is finite flat.

• The ramification index of F at any prime above ℓ is less than or equal to
ℓ− 1.

Under these assumptions, the modularity of ρ1 implies the modularity of ρ2.

Proof. We can find a totally real, finite soluble extension F ′/F such that:

• The extension F ′/F is unramified at primes dividing ℓ.

• ρ|GF ′ satisfies Assumption 5.1. (For this, we need to use the modularity
of ρ1 along with the base change results in [27].)

It follows that ρ2|GF ′ is modular. Langlands’ cyclic base change then shows
that ρ2 is modular. �

In section 9, we will give some applications to the modularity of elliptic
curves. However, let us remark here that Theorem 7.1 will not apply in general
to all supersingular curves, as the first condition at ℓ will not be satisfied in
general. Indeed, let F = Q(

√
3), and let E denote the elliptic curve

y2 = x3 +
√

3x2 + x+ 1.

The curve has discriminant 32(3
√

3− 14), and hence has good reduction at the
prime

√
3 above 3. On the other hand, it is easy to show that multiplication by

3 on the group law of an elliptic curve

y2 = x3 + a2x
2 + a4x+ a6

is given by
[3]t = 3t− 8a2t

3 + · · · ,
so that the curve above has supersingular reduction at

√
3, as v3(a2) = v3(

√
3) >

0, showing that the formal group at 3 has height 2. As in Serre [22], Proposition
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10, the action of tame inertia on the 3-torsion points is given by 2 copies of the
fundamental character of level 1, rather than by the fundamental character of
level 2.

Serre’s argument also shows that in order that the mod 3 representation of
the curve E be given (on tame inertia) by the fundamental character of level 2,
it is necessary and sufficient that the Newton polygon of the multiplication-by-3
map on the formal group should consist of a single line from (1, e) to (9, 0). This
is automatic when e = 1, but if e > 1, then other situations may arise, as above.

It follows that our main result can apply to all supersingular curves defined
over fields F unramified at 3, as well as to many examples of curves defined over
more general fields.

8 Applications I

Theorem 8.1 Let ρ : Gal(Q/Q) −→ GL2(F7) be an absolutely irreducible,
continuous, odd representation. If the projective image of ρ is insoluble, we also
assume that:

• The projective image of inertia at 3 has odd order.

• The determinant of ρ restricted to the inertia group at 7 has even order.

Then ρ is modular.

Sketch of proof. Of course, we need only consider the case when the image of
ρ is insoluble. Moreover by [17], we can assume that the restriction of ρ to
a decomposition group at 7 is irreducible. Twisting by a quadratic character,
we can also assume that ρ|I7 is equivalent to ω2 ⊕ ω7

2 or ω13
2 ⊕ ω7.13

2 where
ω2 : I7 −→ F×49 is the second fundamental character. Applying the axiomatic
formulation of Ramakrishna’s result in [29], together with Theorems 3.2.1, 4.2.1
of [4], one deduces the existence of a continuous, odd representation

ρ : Gal(Q/Q) −→ GL2(Z7)

lifting ρ, unramified outside finitely many primes, determinant the cyclotomic
character times a finite order character, and such that the Artinian quotients ρ
(mod 7n) are finite flat when restricted to the absolute Galois group of Q7(7

1/4).
Assuming the existence of a totally real soluble extension F/Q such that ρ|GF

is modular and the ramification index of F/Q at 7 is at most 6, one deduces the
modularity of ρ by Theorem 7.1 and Langlands’ cyclic base change.

We now explain how to find such a field F. Firstly, we can find a finite
soluble, totally real extension F1/Q and a quadratic twist of ρ|GF1

, which we
denote by ρ̃, such that the following conditions are satisfied.

• The determinant of ρ̃ is the mod 7 cyclotomic character.

• Conditions at 3: Let v be any prime of F1 above 3, and let Dv be a
decomposition group at v.

– ρ̃ is trivial on Dv.

– The ramification index of F1,v/Q3 is odd.

22



• Conditions at 7: Let v be any prime of F1 above 7, and let Dv, Iv be
the decomposition and inertia groups at v. Then, the ramification index
of F1,v/Q7 is exactly 4. Furthermore, we have ρ̃|IF1,v

∼= (ω2 ⊕ ω7
2)|IF1,v

.

We denote by X(ρ̃) the (completed) moduli space of elliptic curves with mod 7
representation symplectically isomorphic to ρ̃ (see [17] for details). The canon-
ical divisor embeds X(ρ̃) as a quartic curve in P2

/F1
.

For each prime v of F1 dividing 3∞, we can find a finite unramified extension
Fv/F1,v and a line Lv defined over F1,v such that Lv cuts X(ρ̃)/Fv

at four
distinct points all of which are defined over Fv. Moreover, the elliptic curves
corresponding to these four points all have good ordinary reduction when v|3.
(See the fourth paragraph in section 5 of [17].) For primes above 7, we have the
following lemma:

Lemma 8.2 Let v be a prime of F1 above 7. We can find a finite Galois
extension Fv/F1,v and an Fv-rational line Lv such that the following holds.

• Lv cuts X(ρ̃)/Fv
at four distinct points all of which are defined over Fv.

• The ramification index of Fv/Q7 is at most 4. The four points of intersec-
tion are all elliptic curves with good supersingular reduction.

Assuming the above lemma, intersecting X(ρ̃) with a line over F1 which is
v-adically close to Lv for each v|3.7.∞ gives the following: There is a finite,
soluble, totally real F ⊃ F1 ⊃ Q, and an elliptic curve E/F satisfying the
following conditions.

• ρE,7 ∼ ρ̃|GF and ρE,3 : GF ։ GL2(F3) is surjective.

• Conditions at primes v dividing 3: E has good ordinary reduction at every
prime above 3 and the ramification index of F at 3 is odd.

• Conditions above 7: F/F1 is unramified at every prime above 7 and E has
good supersingular reduction at every prime above 7.

The elliptic curve E is modular by a result of Skinner and Wiles ([26]), and
therefore ρ is also modular. �

Proof of Lemma 8.2. The modular curve X(ω2 ⊕ω7
2)/Qnr

7
is isomorphic to X(ρ̃)

over Qnr
7 ( 4

√
7). The elliptic curve y2 = x3 + x has j-invariant 1728 and so has

supersingular reduction. Taking a cyclic degree 3 isogeny of E if necessary,
we can assume that X(ω2 ⊕ ω7

2)(Q
nr
7 ) contains an elliptic curve E having good

supersingular reduction and with j-invariant 1728. Let us denote this point by
P. From the geometry of the Klein quartic (see the proposition in section 2 of
[9]), we see that there is a unique involution (in the automorphism group) fixing
P. The normalizer of this involution is a Sylow 2-subgroup, and the orbit of P
when acted on by the normalizer has size exactly 4. Furthermore, they (the
points in the orbit) lie on a unique line.

We can thus find a unique line L passing through P such that:

• L is defined over Qnr
7 ,

• L passes through four distinct points of X(ω2⊕ω7
2) whose j-invariants are

1728.
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We claim that two of these points are already defined over Qnr
7 .We have the point

P with corresponding elliptic curve E. Note that E has complex multiplication
by Z[i] (and the endomorphism ring is already defined over Qnr

7 ). We now

check that the isogeny E
2−2i−→ E gives us another point of intersection (which is

obviously defined over Qnr
7 ). This can be checked over C, and follows from the

following observations.

• The involution

(
0 1
−1 0

)
∈ PSL2(F7) fixes

({1/7, i/7},C/Z + iZ) ∈ X(7)(C).

•
(

2 2
−2 2

)
is in the normalizer of

(
0 1
−1 0

)
and sends

({1/7, i/7},C/Z + iZ) to ({2 − 2i/7, 2 + 2i/7},C/Z + iZ).

Thus each of the four points of intersection are defined over Qnr
7 (

√
7). The

Sylow 2-subgroup which acts transitively on these four points is dihedral; in
terms of generators and relations, it is given by

〈α, β|α4 = β2 = e, βαβ = α3〉.

The unique involution which stabilizes P is α2, and it is defined over Qnr
7 . The

other three points are given by α(P ), β(P ) and αβ(P ).
We now check that α, β are defined over Qnr

7 ( 4
√

7). If σ ∈ GQnr
7 (
√

7), we have

(σ ∗ β)(P ) = σ(β(σ−1P )) = β(P ).

Therefore, we have σ ∗ β = α2i(σ)β where

i : GQnr
7 (
√

7) −→ Z/2Z

is a continuous homomorphism which necessarily factors through Qnr
7 ( 4

√
7). Sim-

ilarly for α. We can thus conclude that all the four points of intersection have
good supersingular reduction Qnr

7 ( 4
√

7).
Finally, it follows that we can find a line defined over an extension of F1,v

with absolute ramification index 4 which cutsX(ρ̃) at four distinct supersingular
points, all defined over that extension. Take Fv to be the Galois closure of the
extension thus constructed, and take Lv to be the line L/Fv

. �

9 Applications II

The aim of this section is to study the modularity of elliptic curves over certain
totally real fields, using Theorem 7.1. Our main results are given by Proposi-
tions 9.2 and 9.3. For the particular example of the field Q(

√
2), we can prove

more; the analogue of the switch between p = 3 and p = 5 used by Wiles
([32], §5) holds, and we can use existing results, together with the new results
in this paper, to deduce the modularity of all semistable elliptic curves over
Q(

√
2).
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In [12], it is explained that this implies a version of Fermat’s Last Theorem
over Q(

√
2). Further calculations in [12] show that Q(

√
2) is the only real

quadratic field for which one can hope to generalise the methods of Ribet and
Wiles to prove such a result. It seems remarkable to us that there are any fields
other than Q for which all the numerology allows us to prove generalisations of
Fermat’s Last Theorem.

We begin by proving results for more general fields. We start with a prelim-
inary lemma.

Lemma 9.1 Let p be equal to 3 or 5, and let F be a totally real number field in
which p is unramified. Let E be an elliptic curve over F with good supersingular
reduction at some place v|p. Then

ρE,p

∣∣
Gal

“

F/F
“√

(−1)(p−1)/2p
””

is absolutely irreducible.

Proof. The presence of a non-trivial complex conjugation shows that irre-
ducibility is the same as absolute irreducibility for odd GL2(Fp)-valued repre-
sentations of totally real fields. The lemma then follows easily when p = 5.

We now do p = 3. Suppose, for a contradiction, that the conclusion of the
lemma fails. Let Iv be a decomposition group at v. Since the image ρE,3(Iv)

is cyclic of order 8, it follows that the image ρE,3(Gal(F/F )) is the full Sylow
2-subgroup of GL2(F3). Denoting by K the splitting field of ρE,3, it follows that

the image ρE,3(Gal(K/F (
√
−3))) is an abelian group of order 8.

The Sylow 2-subgroup of GL2(F3) is the group

〈c, τ | c2 = τ8 = 1, cτ = τ3c〉,

and we may suppose that

c =

(
1 0
0 −1

)
, τ =

(
1 1
−1 1

)
.

Since the image of Gal(K/F (
√
−3)) is in SL2(F3), it must in fact be the sub-

group generated by τ2 and cτ. This subgroup is non-abelian, giving the desired
contradiction. �

The next two propositions prove modularity of many elliptic curves over
certain totally real fields, using Theorem 7.1.

Proposition 9.2 Let F be a totally real number field in which 3 is unramified,
and let E be an elliptic curve over F with good supersingular reduction at primes
above 3. Then E is modular.

Proof. We proceed in several steps. By the result of Langlands and Tunnell,
we know that ρE,3 is modular. However, in order to apply Theorem 7.1 we need
to produce a modular lift with level coprime to 3.
Step I: By Langlands’ cyclic base change, we need only prove the result over a
totally real soluble extension. In particular, making an appropriate base change
if necessary, we can assume that ρE,3|Dv is trivial for any prime v|5.
Step II: We can find an elliptic curve E′ over F such that
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• ρE,3 ∼ ρE′,3,

• ρE′,5 has insoluble image,

• E′ has good ordinary reduction at every prime above 5 and

ρE′,5|Dv
∼=

(
∗ ∗
0 ∗

)
for any v|5

with distinct characters on the diagonal,

• E′ has good reduction at primes above 3.

If we can show that E′ is modular, then ρE′,3 will be a modular lift of ρE,3 of
the ‘right level’; we can then use Theorem 7.1 to conclude that ρE,3 is modular.

In order to show that E′ is modular, we want to make use of its 5-adic
representation and apply the results in [26]. For this, we need to produce a
nearly ordinary modular lift of ρE′,5. Again, we can work over totally real soluble
extensions.
Step III: We can assume that ρE′,5 is trivial when we restrict to primes above
3. We can then find a second elliptic curve E′′ such that

• ρE′,5 ∼ ρE′′,5,

• ρE′′,3 : GF −→ GL2(F3) is surjective,

• E′′ has split multiplicative reduction at every prime above 3 and

ρE′′,3|Dv
∼=

(
∗ ∗
0 ∗

)
for any v|3

with distinct characters on the diagonal,

• E′′ has good ordinary reduction at primes above 5.

By Theorem 7.1, E′′ is modular.
Since ρE′′,5 is a nearly ordinary modular lift, it follows that ρE′,5 is modular.

�

Proposition 9.3 Let F be a totally real number field in which 3 and 5 are
unramified. Let E be an elliptic curve over F with semistable reduction at
primes above 3 and 5. Further, assume that E has good supersingular reduction
at primes above 5 and that ρE,5|Gal(F/F (

√
5)) is irreducible. Then E is modular.

Proof. Going up to a soluble totally real field (without changing ramification
at 3 and 5) if necessary, we can assume that ρE,5|Dv is trivial for places v|3
where E has good reduction. Then using the twisted modular curve X(E[5])/F ,
we can find an elliptic curve E′/F such that

• ρE′,5 ∼ ρE,5,

• E′ has the same reduction type as E at primes above 5,

• E′ is a Tate curve at primes above 3, and

• ρE′,3 : GF −→ GL2(F3) is surjective.
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It follows that ρE′,3 is modular, and ρE′,5 is a modular lift of ρE,5 of the ‘right
level’. Therefore, using either Theorem 5.1 of [26] or Theorem 7.1 of this article,
it follows that ρE,5 is modular. �

Having proven some results over general fields, we now specialise to the case
F = Q(

√
2), for which, as we shall see, there is also a version of the switch

between 3 and 5 used by Wiles ([32], §5). In particular, this allows us to prove
the modularity of all semistable elliptic curves over Q(

√
2).

Proposition 9.4 Let E be a semistable elliptic curve over Q(
√

2). Let p be
either 3 or 5. If ρE,p is irreducible, then

ρE,p

∣∣
Gal

“

F/F
“√

(−1)(p−1)/2p
””

is absolutely irreducible.

Proof. Suppose the proposition fails to hold. Then p does not divide the
order of ρE,p(Gal(F/F )), and so the semistability condition implies that ρE,p is
unramified at primes not dividing p. Further, by Lemma 9.1, we see that E has
good ordinary or multiplicative reduction at p. Therefore, we must have

ρE,p

∣∣
Ip

∼
(
ǫp 0
0 1

)

where ǫp is the mod p cyclotomic character. (Note also that 3 and 5 are inert
in Q(

√
2).)

Let K be the splitting field of ρE,p, and let ζp be a primitive pth root of

unity. Then K is an everywhere unramified abelian extension of Q(
√

2, ζp). The
class number of Q(

√
2, ζp) is then checked to be equal to 1 for both p = 3 and

p = 5 (we used PARI to verify this), giving the required contradiction. �

Proposition 9.5 The modular curve X0(15) has exactly eight Q(
√

2)-rational
points. Four of these are cusps. The remaining four are elliptic curves with
additive reduction at 5.

Proof. X0(15) is an elliptic curve, and, using Cremona’s tables [5], we can find
an explicit equation for it. The rank of X0(15) regarded as an elliptic curve
over Q(

√
2) is the sum of its rank over Q and the rank (over Q) of its quadratic

twist. An equation of X0(15) over Q is y2 +xy+ y = x3 +x2−10x−10, and its
quadratic twist over (

√
2) is y2 = x3 +x2−641x−3105, which is curve 960G3 in

Cremona’s tables. Both curves have rank 0 over Q, and it follows that X0(15)
has rank 0 over Q(

√
2). Thus all of its points over Q(

√
2) are torsion points,

and we can count them by considering the number of points in various residue
fields of Q(

√
2) (as in [24], VII.3). Note that 7 splits in Q(

√
2), so Q(

√
2) has

a residue field isomorphic to F7. Now X0(15) has good reduction at the primes
above 7, and |X0(15)(F7)| = 8. By [24], VII.3.1(b), we see that the size of the
torsion group over Q(

√
2) divides 8. However, we know that X0(15) has 8 points

over Q, all of which are torsion, and so these can be the only points on X0(15)
defined over Q(

√
2). Of these, 4 are cusps, and the remaining 4 correspond to

elliptic curves over Q which have additive reduction at 5 (curves 50A1, 50A2,
50A3 and 50A4 in Cremona’s tables). Since 5 is unramified in Q(

√
2)/Q, these

curves continue to have additive reduction at 5 over Q(
√

2), and so are also
not semistable. It follows that none of the Q(

√
2)-rational points on X0(15)

correspond to semistable elliptic curves. �
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Theorem 9.6 Any semistable elliptic curve over Q(
√

2) is modular.

Proof. Let E be a semistable elliptic curve over Q(
√

2). By Proposition 9.5,
one of ρE,3 or ρE,5 will be absolutely irreducible. The case where ρE,3 is abso-
lutely irreducible and E has good ordinary reduction or multiplicative reduction
at 3 follows from Theorem 5.1 of [26] (using Proposition 9.4 to check the hy-
pothesis that ρE,3|Gal(F/F (

√
−3)) is absolutely irreducible). If ρE,3 is absolutely

irreducible and E has supersingular reduction, then the modularity of E follows
from Proposition 9.2. Otherwise ρE,5 is irreducible, and modularity follows by
switching to an elliptic curve E′ as in the proof of Proposition 9.3. By the pre-
vious argument, E′ is modular, so that ρE′,5

∼= ρE,5 is modular. If E has good
ordinary reduction or multiplicative reduction at 5, modularity follows from
Theorem 5.1 of [26], again using Proposition 9.4 to check that the hypotheses
of this theorem hold. Otherwise, E has good supersingular reduction at 5. As
remarked at the end of §7, since 5 is unramified in Q(

√
2), the Galois represen-

tation ρE,5 has the form given in Theorem 7.1; this theorem now implies that
E is modular, as required. �

Remark 9.7 In fact, Q(
√

2) is not the only real quadratic field for which all the
numerology is valid to deduce modularity. Indeed, let F = Q(

√
17). Note that

3 and 5 are inert in F . Again using PARI, one can verify that the class numbers
of F (ζ3) and F (ζ5) are both 1, so that the analogue of Proposition 9.4 will
hold also for F . (We suspect that this might be the only other real quadratic
field with this property.) Next, the quadratic twist of X0(15) to F is curve
4335D3 in Cremona’s tables, which has rank 0 (and 4 points defined over Q),
so that X0(15) has rank 0 over F . We can count the Q(

√
17)-rational points

by counting the points in residue fields of F whose characteristic is a prime of
good reduction for X0(15). Since 13 and 43 both split in F , and X0(15) has 16
points in F13 and 40 points in F43, we see that the size of the torsion group of
X0(15) over F divides 8. Now one argues as in the case of Q(

√
2) to see that

all semistable elliptic curves over Q(
√

17) are modular.

A The Honda system associated to a Raynaud

scheme

We describe the Honda system associated to a Raynaud scheme. We fix:

k : a perfect field of odd characteristic p,

W (k), v : its Witt ring and normalized valuation v (so v(p) = 1),

σ : the Frobenius automorphism σ : W (k) −→W (k).

We also fix a finite field F of order pr, and we assume that there is an injection
F →֒ k of fields. There are r ‘fundamental characters’, indexed by a principal
homogeneous space over Z/rZ. We recall the definition (Définition 1.1.1 of [20]):
these are maps χi : F → W (k) such that χi|F× is a multiplicative character,
χi(0) = 0, and the composite

F
χi−→W (k)

mod p−→ k

is a homomorphism of fields.
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Given a multiplicative character χ : F× →W (k)×, Raynaud defines a quan-
tity ωχ in W (k). Raynaud also defines, starting from a fundamental character,
another quantity ω ∈ W (k) (which is then shown to be independent of the
choice of fundamental character). We refer to equations 11 of [20] for the defin-
ing relations, and we recall that (Proposition 1.3.1 of [20]):

• Write χ (uniquely) as a product over fundamental characters
∏

i∈Z/rZ χ
ai

i

with 0 ≤ ai ≤ p− 1. Then

ωχ ≡ a1! . . . ar! (modp).

• ω ≡ p! (modp2).

Given two multiplicative characters

χ′ =
∏

i∈Z/rZ

χ
a′

i

i and χ′′ =
∏

i∈Z/rZ

χ
a′′

i

i with 0 ≤ a′i, a
′′
i ≤ p− 1

and such that χ′χ′′ = χi for some i ∈ Z/rZ, we let h be the unique integer such
that 0 < h ≤ r and

a′i−h + a′′i−h = p,

a′i−k + a′′i−k = p− 1 for 0 < k < h,

a′j = a′′j = 0 otherwise.

Throughout we fix a Raynaud scheme G over SpecW (k), and we denote its
coordinate ring by A. We also fix the following presentation of A : it is generated
as a W (k)-algebra by Xi with i ∈ Z/rZ and relations

Xp
i = δiXi+1 where v(δi) = 0 or 1.

We also set γj = ω/δj and denote by λj the Teichmüller lift of γj . The comul-
tiplication map ∆ : A −→ A⊗A is given by the formula

∆(Xi) = Xi ⊗ 1 + 1 ⊗Xi +
∑

χ′χ′′=χi

γi−h . . . γi−1

ωχ′ωχ′′


∏

j

X
a′

j

j


 ⊗


∏

j

X
a′′

j

j


 .

Theorem A.1 Let G/Spec W (k) be as above. Let M be the r-dimensional k-
vector space with basis given by ei, i ∈ Z/rZ. Define Frobenius semi-linear maps
F, V : M −→M by setting

F (ei) = δiei+1 and

V (ei) = λp−1

i−1ei−1,

on the basis elements ei and then extending semi-linearly. (So F (αv) = σ(α)F (v)
and V (αv) = σ−1(α)V (v) for α ∈ k.) Let L ⊂M be the k-linear subspace of M
spanned by λi−1ei, i ∈ Z/rZ. Then (L,M) is the Honda system associated to G.
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Witt covectors

For n ≥ 0, set

Wn = Wn(X0, . . . , Xn)
def
= Xpn

0 + pXpn−1

1 + · · · + pnXn.

There are polynomials

Sn ∈ Z[Y0, Y1, . . . ;Z0, Z1, . . .]

where S0 = Y0 + Z0, and Sn, for n ≥ 1, satisfies the relation

Wn(S0, S1, . . . , Sn) = Wn(Y0, Y1, . . . , Yn) +Wn(Z0, Z1, . . . , Zn).

We record the following for future use.

Proposition A.2 Modulo the ideal (p, Y p
0 , . . . , Y

p
n−2, Z

p
0 , . . . , Z

p
n−2), we have

Sn(Y0, . . . , Yn;Z0, . . . , Zn) = Yn + Zn +

p−1∑

i=1

Y i
n−1Z

p−i
n−1

i!(p− i)!
+

n−2∑

r=0

(−1)n−r ((Yn−1 + Zn−1) · · · (Yr+1 + Zr+1))
p−1

p−1∑

i=1

Y i
rZ

p−i
r

i!(p− i)!
.

Proof. We have

Sn = Yn + Zn +
Y p

n−1 + Zp
n−1 − Sp

n−1

p
+
Y p2

n−2 + Zp2

n−2 − Sp2

n−2

p2
+ . . .

Thus modulo Xp
i , i ≥ 0, we have

Sn = Yn + Zn +
Y p

n−1 + Zp
n−1 − Sp

n−1

p
.

Assume the proposition for n − 1. The right hand side of the above relation,
modulo (p,Xp

0 , X
p
1 , . . .), is equal to

Yn + Zn +
Y p

n−1 + Zp
n−1 − (Yn−1 + Zn−1)

p

p

−(Yn−1 + Zn−1)
p−1

n−2∑

r=0



(−1)n−1−r

n−2∏

j=r+1

(Yj + Zj)
p−1

p−1∑

i=1

Y i
rZ

p−i
r

i!(p− i)!



 .

This proves the proposition. �

Definition A.3 We define S̃−n ∈ Fp[Y−n, . . . , Y0;Z−n, . . . , Z0] to be the poly-
nomial

Y0 + Z0 +

p−1∑

i=1

Y i
−1Z

p−i
−1

i!(p− i)!
+

n∑

r=2

(−1)r−1 ((Y−1 + Z−1) · · · (Y−r+1 + Z−r+1))
p−1

p−1∑

i=1

Y i
−rZ

p−i
−r

i!(p− i)!
.

We have Sn(Y−n, . . . , Y0;Z−n, . . . , Z0) ≡ S̃−n mod (p, Y p
−2, . . . , Y

p
−n, Z

p
−2, . . . , Z

p
−n).
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The following definition is due to Fontaine ([10]).

Definition A.4 For any finite k-algebra R, the group of R-valued Witt covec-
tors CWk(R) is given by:

• As a set, the elements of CWk(R) are sequences

{(. . . , a−n, . . . , a−1, a0) : a−i ∈ R is nilpotent for large i} .

• For (a−i)i≥0, (b−i)i≥0 ∈ CWk(R), let

c−n = lim
m→∞

Sm(a−n−m, . . . , a−n; b−n−m, . . . , b−n).

The sequence (c−i)i≥0 ∈ CWk(R), and the group law is

(a−i)i≥0 + (b−i)i≥0
def
= (c−i)i≥0.

• The identity element is (. . . , 0, 0). These give CWk(R) the structure of a
commutative group (Proposition 1.4, Chapter II of [10]).

CWk(R) has a natural structure of a W (k)-module which, for x ∈ k, is given
by

[x](. . . , a−n, . . . , a−1, a0) = (. . . , xp−n

a−n, . . . , x
p−1

a−1, xa0).

Here, [x] is the Teichmüller lift of x. The Frobenius and Verschiebung operators
F, V : CWk(R) −→ CWk(R) are given by

F (. . . , a−n, . . . , a−1, a0)
def
= (. . . , ap

−n, . . . , a
p
−1, a

p
0), and

V (. . . , a−n, . . . , a−1, a0)
def
= (. . . , a−n+1, . . . , a−1).

These are additive, and they satisfy the relation FV = V F = p. As for com-
patibility with the W (k)-module structure, one has Fα = σ(α)F and V α =
σ−1(α)V where σ : W (k) −→W (k) is the Frobenius. In other words, the Witt
covectors CWk(R) form a module over the Dieudonné ring Dk = W (k)[F, V ].

The Dieudonné module of the special fibre

We now calculate the Dieudonné module associated to the special fibre Gk. We
know that this is a vector space over k of dimension r.

Following [10], we need to calculate certain elements of Ak-valued Witt cov-

ectors. These elements are formal group homomorphisms from Gk to ĈWk.
We will describe the ‘homomorphism’ condition shortly, but let us start with a
candidate covector a = (. . . , a−n, . . . , a0). Since FV (a) = pa = 0, we must have
ap
−n = 0 for n ≥ 1. The comultiplication map

∆ : Ak −→ Ak ⊗k Ak

gives us an Ak ⊗k Ak-valued Witt covector

∆(a) = (. . . ,∆(a−n), . . . ,∆(a0)).
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In CWk(Ak ⊗k Ak), we also have the sum

a ⊗ 1 + 1 ⊗ a = (. . . , a−n ⊗ 1, . . . , a0 ⊗ 1) + (. . . , 1 ⊗ a−n, . . . , 1 ⊗ a0).

The ‘homomorphism’ condition is then

∆(a) = a ⊗ 1 + 1 ⊗ a.

We now define covectors

ei
def
=


. . . , γp−n

i−1 · · · γp−2

i−n+1γ
p−1

i−n︸ ︷︷ ︸
n factors

Xi−n, . . . , γ
p−1

i−1Xi−1, Xi




for i ∈ Z/rZ. Here we are viewing Xj and γj modulo p (and so γp−n

j is the mod

p reduction of σ−n(γj)). We shall check (by a tedious, but entirely straightfor-
ward, calculation) that ei satisfies the ‘homomorphism’ condition. Note that
Fen = (. . . , 0, . . . , 0, Xp

n) as Xp
n 6= 0 mod p implies γn ≡ 0 mod p.

We write Yi = Xi ⊗ 1 and Zi = 1 ⊗Xi, and so

ei ⊗ 1 = (. . . , γp−1

i−1Yi−1, Yi),

1 ⊗ ei = (. . . , γp−1

i−1Zi−1, Zi).

Lemma A.5 • For any n ≥ 0, we have

γi−1γi−2 · · ·γi−(n+1) =
{(
γp−1

i−1

)(
γp−2

i−1γ
p−1

i−2

)
· · ·

(
γp−n

i−1 · · ·γp−1

i−n

)}p−1

×
(
γp−(n+1)

i−1 · · ·γp−1

i−(n+1)

)p

• For any n ≥ r − 1, we have

∆(Xi) = S̃−n(ei ⊗ 1; 1 ⊗ ei).

• ∆(ei) = ei ⊗ 1 + 1 ⊗ ei.

Proof. The first part is a simple manipulation of symbols; the third part follows
from the second (for example, apply the V operator).

We now prove the second part of the lemma. Since Xk (resp. Yk, Zk, γk) is
Xk+r (resp. Yk+r , Zk+r, γk+r), it follows that the limit

lim
m→∞

Sm

((
γp−m

i−1 · · · γp−1

i−m

)
Yi−m, . . . , Yi;

(
γp−m

i−1 · · · γp−1

i−m

)
Zi−m, . . . , Zi

)

is equal to

S̃−r+1(ei ⊗ 1; 1 ⊗ ei) = S̃−n(ei ⊗ 1; 1 ⊗ ei) for any n ≥ r − 1.

Using the first part, we see that S̃−r+1 is equal to

Yi + Zi + γi−1

p−1∑

j=1

Y j
i−1Z

p−j
i−1

j!(p− j)!
+

r−2∑

k=1

(−1)k




k+1∏

j=1

γi−j







k∏

j=1

(Yi−j + Zi−j)
p−1




p−1∑

j=1

Y j
i−k−1Z

p−j
i−k−1

j!(p− j)!
.
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Now

(Yi−1 + Zi−1)
p−1 · · · (Yi−k+1 + Zi−k+1)

p−1

p−1∑

j=1

Y j
i−kZ

p−j
i−k

j!(p− j)!

=
∑ (−1)k−1

ai−1! · · ·ai−k!bi−1! · · · bi−k!
Y

ai−1

i−1 · · ·Y ai−k

i−k Z
bi−1

i−1 · · ·Zbi−k

i−k

where the sum is over
{

0 ≤ ai−1, . . . , ai−k+1 ≤ p− 1, 1 ≤ ai−k ≤ p− 1, and
ai−j + bi−j = p− 1, j = 1, . . . , k − 1; ai−k + bi−k = p.

The second part of the lemma easily follows. �

Lemma A.6 The covectors e1, . . . , er are k-linearly independent.

Proof. First suppose that one of the γi is divisible by p. Then each en has only
finitely many non-zero terms. Applying the V operator, one reduces the linear
independence of e1, . . . , e1 to the k-linear independence of X1, . . . , Xr, which is
clear.

In the remaining case, we have Ak = k[X1, . . . , Xr]/(X
p
1 , . . . , X

p
r ). The 0th

term of α1e1 + · · · + αrer is

α1X1 + · · · + αrXr + an element of (X1, . . . , Xr)
2,

and the lemma follows. �

It now follows that the k-linear span of e1, . . . , er, which is a subspace of the
Dieudonné module of Gk, is in fact the whole Dieudonné module (as both are
of dimension r).This gives the following proposition:

Proposition A.7 The Dieudonné module of Gk is the r-dimensional k-vector
space

ke1 ⊕ · · · ⊕ ker

with Frobenius and Verschiebung actions given by

F (ei) = δiei+1, and

V (ei) = λp−1

i−1ei−1

on the basis elements ei, i ∈ Z/rZ, which one then extends semi-linearly. �

The Honda system associated to G

We need to determine the kernel L of the composite

M →֒ CWk(Ak)
w−→ AK/pA

where w is defined as follows: for (a−n) ∈ CWk(Ak), choose for each a−n a lift
â−n ∈ A, and define

w((a−n))
def
=

∑

n≥0

p−nâpn

−n mod pA.
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This is well-defined (see Chapter II, section 5.2 of [10]).
Let λj be the Teichmüller lift of γj mod p. Note that as

Xpn

i−n =
ωpn−1

γpn−1

i−n

ωpn−2

γpn−2

i−n+1

· · · ω

γi−1
Xi

and
v

(
ωpn−1+...+1

)
= (pn − 1)/(p− 1),

we have

p−n
(
λp−n

i−1 · · ·λp−1

i−n

)pn

Xpn

i−n ∈ pA

for n ≥ 2. It follows that

w(ei) ∼= Xi + p−1λi−1X
p
i−1 mod pA

∼=
{
Xi mod pA if λi−1 = 0
0 mod pA if λi−1 6= 0

.

Thus L contains the subspace of M spanned by the covectors λi−1ei. Alter-
natively, L contains the subspace generated by ei with p dividing δi−1. Since
FM is the k-span of ei with p not dividing δi−1, a dimension count shows that
L is in fact the k-span of λi−1ei.
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