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Abstract

We study solutions of the Fermat equation defined over Q(
√

2), and
prove a version of ‘Fermat’s Last Theorem’ over Q(

√
2), assuming an

unpublished result of Fujiwara.

AMS Subject Classification: 11D41; 11F41, 11F80

1 Introduction

As is well-known, one has the theorem ([28], [35], [39]):

Theorem 1.1 (Wiles,Taylor-Wiles) The equation xn+yn = zn with x, y, z ∈
Z has no solutions with xyz 6= 0 when n ≥ 3.

The method of proof of this theorem, originating in Serre ([30]), also ap-
plies to some other Diophantine equations. However, there are other ways
to generalise the theorem, and in this paper we will study solutions of the
Fermat equation in Q(

√
2), explaining that all the ideas of Ribet and Wiles

carry through. There has been little study of Diophantine equations over
more general number fields, and, as far as we are aware, no attempt has pre-
viously been made to apply Wiles’s techniques to Diophantine problems over
other fields. However, Hao and Parry [14] have generalised Kummer’s ap-
proach to the Fermat equation using the arithmetic of cyclotomic extensions
of quadratic fields.

Work of Debarre and Klassen [6] suggests the following conjecture:

Conjecture 1.2 (Debarre-Klassen) Let K be a number field of degree d
over Q. Then the equation xn + yn = zn has only trivial solutions over K
when n ≥ d + 2.

Here, Debarre and Klassen define trivial solutions to mean points (a, b, c) on
xn + yn = zn where a + b = c. This deals not only with the rational points,
but also with solutions such as ωn +ωn = 1 when ω is a primitive 6th root of
unity, belonging to any field containing Q(

√
−3), and n ≡ 1 or 5 (mod 6).

In generalising the approach of Ribet and Wiles to a number field K, we
need to have some notion of level lowering for modular forms over K. This
means that, at present, we are restricted to totally real number fields, when
we may use results for Hilbert modular forms similar to those of Ribet. The
simplest case is that of a real quadratic number field. We indicate in this
paper that all the numerology required to generalise the work of Ribet and
Wiles directly continues to hold for Q(

√
2). In the final part of the paper,

however, we will explain that there are no other real quadratic fields for
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which this is true, although some of the obstacles may be easy to overcome
in some cases of small discriminant.

We shall prove the following theorem, which is a special case of the
Debarre-Klassen conjecture.

Theorem 1.3 The equation xn + yn = zn with x, y, z ∈ Z[
√

2] has no solu-

tions with xyz 6= 0 when n ≥ 4.

We should stress that this result partly depends on Fujiwara’s work ([11])
on level lowering, which remains unpublished. (Alternative published refer-
ences are available for all but the proof of Mazur’s Principle in even degree.)

The paper begins with a general discussion of solutions of the Fermat
cubic over quadratic fields. In particular, the points on the Fermat cubic
over Q(

√
2) will be classified. The following section will concentrate on other

small exponents. After this, we will begin the study of the Ribet-Wiles
approach over Q(

√
2), and prove Theorem 1.3 for prime exponents at least

17. Next, we will show that the method can be extended to prove the result
for prime exponents at least 11. Finally, we consider the remaining small
exponents (for which there are already results in the literature) to complete
the proof of Theorem 1.3.

2 Exponent 3

In this section, we study the Fermat cubic over general quadratic fields.
This has a long and distinguished history, notably through papers of Aigner,
Fogels and Fueter, although their techniques were motivated by class field
theory, rather than the theory of elliptic curves.

We prove the following elementary result, which completely classifies
points on the Fermat cubic over real quadratic fields.

Lemma 2.1 Solutions of x3+y3 = 1 over Q(
√

d) are in correspondence with

Q-points on the elliptic curve y2 = x3 − 432d3.

Proof. One way to prove this is to use the fact that x3 +y3 = 1 has only the
rational points (1, 0), (0, 1) and the point at infinity (this is Fermat’s Last
Theorem for exponent 3 over Q). If P denotes a point on the curve with
coefficients in Q(

√
d) but not in Q, then P σ is also on the curve, where σ

denotes the non-trivial element in Gal(Q(
√

d)/Q). The line joining P and
P σ is easily seen to have equation defined over Q. Thus the three points
of intersection of the line with the Fermat cubic are defined, as a set, over
Q. The element σ interchanges P and P σ, so must fix the third point of
intersection, R say. This point R is therefore a rational point on the Fermat
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cubic, so is one of those listed above. Conversely, every line with rational
slope passing through a rational point R on the Fermat cubic meets the cubic
at two further points, and these are necessarily defined over a quadratic field.

We see that every point over a quadratic field on the Fermat cubic is
the intersection of a rational line passing through a rational point. We can
write down all such lines passing through (1, 0) say; they are given by y =
a(x − 1) for a ∈ Q. The x-coordinates of points of intersection of this
line with the Fermat cubic are given by x3 + a3(x − 1)3 = 1, which gives
(x − 1)(x2 + x + 1 + a3(x2 − 2x + 1)) = 0, so that the other x-coordinates
are the roots of (a3 + 1)x2 + (1 − 2a3)x + (a3 + 1) = 0. Thus the points
of intersection lie in Q(

√
−12a3 − 3), and this equals Q(

√
d) if and only if

b2d = −12a3 − 3 for some b ∈ Q. Thus we are searching for Q-points on the
elliptic curve dy2 = −12x3 − 3; it is easy to see that this is isomorphic to the
Mordell curve y2 = x3 − 432d3. �

Alternatively, it is easy to construct a proof from the observation that
the Fermat cubic is isomorphic to y2 = x3 −432, and the elliptic curve in the
lemma is its quadratic twist over Q(

√
d).

In the case where d = 2, it follows that Q(
√

2)-points on the Fermat cubic
are in bijection with Q-points on y2 = x3 −3456, whose minimal Weierstrass
model is y2 = x3 − 54 (curve 1728A2 in [4]). This is an elliptic curve of rank
1 and no non-trivial torsion; the group of Q-points is generated by the point
(7, 17). This corresponds to the solution

(18 + 17
√

2)3 + (18 − 17
√

2)3 = 423. (1)

(Note that Aigner [2] has shown that any point on the Fermat cubic defined
over a quadratic field Q(

√
d) may be written in the form (a + b

√
d)3 + (a −

b
√

d)3 = c3 for some a, b, c ∈ Q, after multiplying by constants and rearrang-
ing the equation; this result can also be derived from Lemma 2.1 – indeed,
there is a common factor of

√
2 in equation (1).)

As y2 = x3 − 54 has rank 1 and is torsion-free, the group of solutions
to the Fermat cubic over Q(

√
2) is isomorphic to Z. For example, the point

[2](7, 17) corresponds to the solution

(707472 + 276119
√

2)3 + (707472 − 276119
√

2)3 = 11067003.

Similar methods may be used to determine the Q(
√

d)-points on the Fer-
mat cubic for any d; for example, if d = 3, there are no points on the Fermat
cubic except the three trivial rational points.
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3 Proof of Theorem 1.3 for prime exponents

at least 17

The strategy for studying the points on the Fermat curve of prime degree is
the same as that of Ribet [28] and Wiles [39]. Given a prime exponent p,
and a solution αp + βp = γp with α, β and γ in Q(

√
2), we form the Frey

curve F , defined by
y2 = x(x − αp)(x + βp).

We say that an elliptic curve over F = Q(
√

2) is modular if there is some
Hilbert cuspidal eigenform of weight (2, 2) over F whose `-adic Galois rep-
resentations coincide with those of the curve. For p ≥ 17, we will explain
that this curve cannot be modular, contradicting a result of [22], and thus
proving Theorem 1.3 in this case.

We begin by proving that the Frey curve F is semistable for p ≥ 11, at
least after suitably manipulating α, β and γ.

Lemma 3.1 Suppose that p ≥ 11. Given a non-trivial solution to (α, β, γ) to

xp + yp = zp over Q(
√

2), there is an associated Frey curve with a semistable

model.

Proof. To prove this, we simply go through Tate’s Algorithm (see [32]).
We may assume that (α, β, γ) are pairwise coprime. Note that OF = Z[

√
2]

and OF/(
√

2) ∼= {0, 1}, from which we observe that precisely one of α, β, γ
is congruent to 0 (mod

√
2). Without loss of generality, assume that β ≡

0 (mod
√

2). Then either α ≡ γ ≡ 1 (mod 2) or α ≡ γ ≡ 1 +
√

2 (mod 2).
Let u denote the fundamental unit 1 +

√
2 ∈ O×

F . Observe that if α ≡
1 +

√
2 (mod 2) then αu ≡ 1 (mod 2). Thus, multiplying throughout by u

reduces us to the first case α ≡ γ ≡ 1 (mod 2). Further multiplying by −1
if necessary, we may assume without loss of generality that α ≡ 3 (mod 4).
One now readily checks Tate’s algorithm ([32], IV9), and verifies that the
Frey curve F ,

y2 = x(x − αp)(x + βp)

over Q(
√

2), has a semistable model. �

Next, we recall a result of Kraus ([24]):

Theorem 3.2 (Kraus) Let K be a quadratic field whose ring of integers in

principal, and let E be a semistable elliptic curve defined over K. Then if

E(K) contains a subgroup of order p stable under Gal(K/K), then either

p ≤ 13 or p|DKNK/Q(u2 − 1), where DK denotes the discriminant of K, and

u denotes the fundamental unit.
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Note that if F = Q(
√

2), DF = 8 and NF/Q(u2 − 1) = −4. If p ≥ 17, we
deduce that the mod p representation ρ = ρF ,p is absolutely irreducible.

Note also that the Frey curve has discriminant 16(αβγ)2p, so that the
mod p representation ρ is unramified at all primes except those above 2 and
p, and is finite at primes above p. Since the Frey curve is semistable, no
prime divides the conductor to a power greater than 1.

We also recall Theorem 9.6 of [22]:

Theorem 3.3 (Jarvis-Manoharmayum) Every semistable elliptic curve

over Q(
√

2) is modular.

This means that the p-adic Galois representation ρF ,p is isomorphic to
ρf,p, the p-adic Galois representation associated to some modular form f of
weight (2, 2) and some level. In particular, its reduction ρ is modular.

Since ρ is absolutely irreducible (remember that we are assuming that
p ≥ 17), we may now apply the main results of level lowering. Firstly, we
add an auxiliary prime to the level, as in [34]. This allows us to use level
lowering results whose proofs require geometric arguments on Shimura curves
on quaternion algebras ramified at exactly one infinite place (and also at the
auxiliary prime we have added). Using these results, we may remove all the
primes from the level at which ρ is unramified, namely all those primes except
those dividing 2 and p (and the auxiliary prime), using the main result of
Rajaei’s paper [27].

We may now remove the primes above p using the main result of [21]
(working still with Shimura curves on this quaternion algebra), and finally
remove the auxiliary prime using Fujiwara’s version of Mazur’s Principle for
even degree ([11]). The only prime that remains is the prime (

√
2) above 2.

Since the Frey curve is semistable, this prime can only occur with exponent
at most 1 in the conductor of the Frey curve, and we conclude that ρ is
modular of weight (2, 2) on the group

U0(
√

2) =

{

(

α β
γ δ

)

∈
∏

q

GL2(OF,q)

∣

∣

∣

∣

∣

√
2|γ

}

.

The definition of modular forms on these open compact subgroups are given
in [15], (2.3). Since det U0(

√
2) is maximal, and since the strict class number

of Q(
√

2) is 1, these adelic modular forms coincide with the classical Hilbert
cusp forms on the group

Γ0(
√

2) =

{(

α β
γ δ

)

∈ SL2(Z[
√

2])

∣

∣

∣

∣

√
2|γ

}

6



using the isomorphism between adelic and classical modular forms given in
[15], (2.6a).

Finally, we prove that there are no Hilbert cusp forms on this group. We
compute the dimension of the space of cusp forms from the formula:

1 + dimS(2,2)(Γ) = vol(h2/Γ) +
∑

a

E(Γ, a) +
∑

κ

L(Γ, κ)

of Freitag ([10], II Theorem 4.8). Here, the volume term can be related to
the value of a zeta function, and the contributions E(Γ, a) (resp. L(Γ, κ)) of
elliptic points a (resp. cusps κ) can also be made explicit in terms of various
class numbers.

Since Γ0(
√

2) is a subgroup of index 3 in SL2(Z[
√

2]), and tables show that
vol(h2/Γ) is 1

24
, we see that vol(h2/Γ0(

√
2)) = 1

8
. The elliptic points of the

full Hilbert modular group SL2(Z[
√

2]) were computed by Gundlach ([13]),
and one can use this to find the elliptic points for the subgroup. Some
slight care must be taken here, as there are elliptc points of order 2 for
the subgroup which lie above elliptic points of order 4 for the full modular
group. We find that there are four elliptic points of order 2, each contributing
1
8

to the formula, and two elliptic points of order 4, one contributing 1
16

and
the other contributing 5

16
. Finally, the cusp contribution is trivial for the full

Hilbert modular group, and one can deduce the same result for the subgroup.
Inserting all terms into the formula, we now have

dim S(2,2)(Γ0(
√

2)) =
1

8
+ 0 +

7

8
− 1 = 0

as required.
Alternatively, we can switch to the totally definite quaternion algebra of

discriminant 1, and use results of Vignéras [38] (see the table on pp.154–155)
to deduce this result.

We therefore have a contradiction, which proves Theorem 1.3 for prime
exponents p ≥ 17.

4 Exponents 11 and 13

In the proof above, the assumption that p ≥ 17 is used at only one point; for
all the remaining implications, p ≥ 11 is sufficient. Although the points
on the Fermat equation of degree 11 over Q(

√
2) are already known for

Q(
√

2) (and indeed over any field of degree at most 5 over Q) by the work
of Gross-Rohrlich [12], we shall give another proof here to motivate the case
of exponent 13.
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The requirement that p ≥ 17 came from Kraus’s paper [24] on the irre-
ducibility of mod ` Galois representations associated to elliptic curves over
Q(

√
2). This may be best possible for general elliptic curves over Q(

√
2), but

the Frey curve has the additional property that its 2-torsion points are all
defined over Q(

√
2). In this section we shall indicate why such curves cannot

have reducible mod 11 or mod 13 representations.
To give an elliptic curve whose 2-torsion is defined over Q(

√
2), and which

has a Q(
√

2)-rational subgroup of order p is equivalent to giving a non-
cuspidal point on the modular curve X associated to the group Γ(2)∩Γ0(p).
The complex points of X are in bijection with h/Γ(2) ∩ Γ0(p). The groups

Γ(2) ∩ Γ0(p) and Γ0(4p) are conjugate via the matrix

(

2 0
0 1

)

. This gives

an isomorphism from X to the curve X0(4p) defined on complex points by
z 7→ 2z. Both X and X0(4p) are defined over Q and the isomorphism between
them is also defined over Q. Thus the Q(

√
2)-points on X are in bijection

with the Q(
√

2)-points on X0(4p).

Theorem 4.1 There are no non-cuspidal Q(
√

2)-points on X0(44).

Proof. There is a covering from the modular curve X0(44) to the elliptic
curve

E y2 = x3 + x2 + 3x − 1,

numbered 44A1 in Cremona’s tables [4], and the degree of the modular
parametrisation is 2. Furthermore, E has 3 rational points. However, E
has no further Q(

√
2)-points, because if P were a Q(

√
2)-point on E, then

P 	 P σ would be a point (a, b
√

2) on E with a, b ∈ Q. Then (a, b) would be
a Q-point on the quadratic twist of E to Q(

√
2), which is the curve

E2 y2 = x3 − x2 + 11x − 19,

which is curve 704D1 in [4]. However, E2 has no non-trivial Q-points, so
P = P σ, and therefore P is a Q-point on E. Thus there are exactly 3
Q(

√
2)-points on E, and therefore at most 6 Q(

√
2)-points on X0(44). But

it is well known (see [26], for example) that if p is an odd prime, then X0(4p)
has exactly 6 cusps, and all such cusps are rational. Therefore these are
exactly all the Q(

√
2)-points on X0(44), which completes the proof of the

theorem. �

Theorem 4.2 There are no non-cuspidal Q(
√

2)-points on X0(52).

Proof. We prove this in the same way as Theorem 4.1. The curve

E ′ y2 = x3 + x − 10,
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labelled 52A1 in Cremona’s tables [4], has 2 rational points, (2, 0) and O,
and admits a degree 3 modular parametrisation from X0(52). As before, let
P denote a Q(

√
2)-point on E ′; then P 	 P σ corresponds to a point on the

quadratic twist
E ′

2 y2 = x3 + 4x − 80,

which is curve 832D2 in [4]. This has 2 rational points, so we cannot imme-
diately deduce the theorem in this case.

We first observe that the rank of 52A1 over Q(
√

2) is the sum of its rank
over Q, and the rank over Q of its quadratic twist 832D2, which gives 0.
Thus all Q(

√
2) points are torsion, and we can compute the torsion group

over Q(
√

2) as in [31], § VII3. As the primes 7 and 17 split, Q(
√

2) has
residue fields (isomorphic to) F7 and F17. However, the curve has 10 points
defined over F7 and 12 points defined over F17. In particular, there are no
17-torsion points (as (10,17)=1) or 7-torsion points (as (12,7)=1), and we
conclude that the order of the torsion group therefore divides 10 and 12, and
therefore has at most 2 elements, which must be the Q-points on 52A1. �

Corollary 4.3 The mod 11 and mod 13 Galois representations associated to

the Frey curve are irreducible.

We see that the proof of Theorem 1.3 is also valid for p = 11 and p = 13.

5 Small exponents

To prove Theorem 1.3 for all exponents n ≥ 4, we have to consider the cases
n = 4, 6, 9, and prime exponents at least 5. Since we have dealt with prime
exponents at least 11, it remains to consider the cases of exponents 4, 5, 6,
7 and 9.

All these cases are already considered in the literature (as is the case of
exponent 11), although we give a new proof for exponent 6 below.

Exponent 4 was first proven by Aigner [1]; a stronger result classifying
solutions of the Fermat quartic over all quadratic and cubic extensions of Q

was obtained by Faddeev [8], and independently also by Mordell [25]. The
only points in quadratic fields are defined over Q(

√
−1) (solutions such as

i4+04 = 14) and over Q(
√
−7) (the solutions are given by x = 1

2
ε1(1+ε

√
−7),

y = 1
2
ε2(1− ε

√
−7), z = 1, and multiples of these, where ε, ε1 and ε2 are each

±1). In particular, there are no non-trivial points over Q(
√

2). Incidentally,
the non-trivial solutions are all obtained as the points of intersection of the
Fermat quartic with a line passing through two of the four rational points
on the quartic x4 + y4 = 1 (a case of a stronger conjecture of [6])
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Exponents 5 and 7 (and also exponent 11) were considered by Gross and
Rohrlich [12]. The most complete result for exponent 5 was given by Klassen
and Tzermias [23], in which all points on the Fermat quintic are classified
which lie in extensions of Q of degree at most 6. Other than the three rational
points on the Fermat quintic, there are only two solutions in quadratic fields,
given by (1±

√
−3)5 +(1∓

√
−3)5 = 25, coming from the sixth roots of unity.

Again, there are no non-trivial points over Q(
√

2). Exponent 7 was also
treated by Tzermias [36] in a similar way to the exponent 5 case. Tzermias
classifies all points on the Fermat equation of degree 7 lying in an extension
of Q of degree at most 5 (Gross and Rohrlich consider extensions of degree
at most 3). Again, the only two solutions in quadratic fields, other than the
three rational points, are (1 ±

√
−3)7 + (1 ∓

√
−3)7 = 27 and multiples of

these. Therefore there are no non-trivial points over Q(
√

2).
These proofs rely on the fact that the Jacobians of the Fermat curves of

degree 5 and 7 have finitely many rational points. This is false for degree 6,
and also for prime degree at least 11 ([9], [12]).

The cases of exponents 6 and 9 are also due to Aigner [3]; Aigner shows
that the Fermat curves of degree 6 and 9 have no points over quadratic fields
except the trivial rational points. Aigner’s proof relies on an analysis of his
standard form for solutions to x3 + y3 = z3 mentioned above.

We give another proof for exponent 6 over Q(
√

2) which is shorter and
easier than Aigner’s proof, although our proof will not generalise to every
quadratic field. We first give a simple proof of Fermat’s Last Theorem for
exponent 6 over Q which makes no reference to exponent 3, and then explain
that it generalises to Q(

√
2).

Lemma 5.1 Suppose that a6 + b6 = c6 with a, b, c ∈ Z. Then abc = 0.

Proof. Without loss of generality, we may assume that a, b and c are pairwise
coprime. Then (a3, b3, c3) form a Pythagorean triple, so that there exist non-
zero coprime integers m and n such that

a3 = 2mn

b3 = m2 − n2

c3 = m2 + n2.

Multiply these together to get

(abc)3 = 2m5n − 2mn5.

Divide by n6, put u = m
n

and v = abc
n2 to get

v3 = 2u5 − 2u.
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Multiply throughout by u3, and set x = uv, y = u4. We obtain the curve

x3 = 2y2 − 2y.

This curve is (isomorphic to) curve 108A1 in Cremona’s tables [4]. We find
that it has rank 0, and 3 rational points. These three points are visibly (0, 0),
(0, 1) and the point at infinity (which cannot occur as n 6= 0). In the first
two cases, x = 0, so uv = 0, and it is easy to see that v = 0, and then abc = 0
as required. �

The classification of Pythagorean triples is merely an explicit isomorphism
between the projective line P1 and the projective circle x2 + y2 = z2 given
by [m : n] 7→ [2mn : m2 − n2 : m2 + n2], and this isomorphism is valid over
any field not of characteristic 2.

Theorem 5.2 The equation a6 + b6 = c6 has no non-trivial solutions over

Q(
√

2).

Proof. We may suppose a, b, c ∈ Z[
√

2] are all positive and have no common
factor. Then (a3, b3, c3) is a point on the circle, and points are parametrised
by (2kmn, k(m2−n2), k(m2 +n2)) as above, where k, m and n are in Q(

√
2).

In the same way as in Lemma 5.1, we get a Q(
√

2)-point P on the elliptic
curve 108A1. Then P 	P σ will correspond to a point on the quadratic twist
1728F1 of 108A1 to Q(

√
2). But this curve has no non-trivial Q-points, so

that P = P σ, and P must be defined over Q. But we have already noted that
the 3 rational points on 108A1 correspond to trivial solutions to the Fermat
sextic. �

6 A variant

In his original work, Serre ([30], §4.3) also explains that the same method of
proof he suggested for the Fermat equation, and subsequently done by Ribet
and Wiles, would also work for certain variants of the form

xp + yp = Lazp,

where L is a prime taken from a finite list, a ∈ Z≥0, and the exponent p is a
prime different from L and at least 11. In this section, we wish to point out
that a similar result is available for the variant

xp + yp = λazp

over Q(
√

2), where λ is one of the primes 3 ±
√

2 dividing 7, and p ≥ 17.
The method of proof is the same as that above.
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We start by assuming that a solution exists,

αp + βp = λaγp.

Then we form the Frey curve

y2 = x(x − αp)(x + βp).

Over Q(
√

2), this curve has a semistable model (as p ≥ 11) and its mod p
representation has conductor

√
2λ. Kraus’s result (as p ≥ 17) tells us that

the mod p representation is absolutely irreducible. Next, the result of Jarvis-
Manoharmayum gives that the Frey curve is modular, and so, in particular,
the mod p representation is modular. Now level lowering (again assuming
Fujiwara’s version of Mazur’s Principle with [F : Q] even) allows us to show
that there is a cuspidal Hilbert modular form of weight (2, 2), an eigenvector
for the Hecke operators, and on the group U0(

√
2λ). Again we can use a

calculation similar to that above, listing the elliptic points and cusps, to see
that the space S(2,2)(U0(

√
2λ)) = (0) for these λ (this calculation can again

be bypassed by referring to the tables of Vignéras [38]). We therefore obtain
a contradiction, as before.

These two values of λ are the only primes for which there are no non-zero
cusp forms in S(2,2)(U0(

√
2λ). Serre uses tables of modular forms (over Q) to

deduce similar results for variant equations over Q, even when S2(Γ0(2L)) 6=
(0), by observing that the mod p representations associated to Frey curves
have certain congruence properties (coming from the fact that the curves
have rational 2-torsion subgroups), and observing that the tables contain no
forms whose mod p representations have these congruence properties. One
direction for future research might be to construct tables of Hilbert modular
forms and to deduce similar variants to those of Serre. Of course, the same
method would also apply to the Fermat equation itself, and might bypass
some of the obstructions noted below, although the only other real quadratic
field for which the modularity of semistable elliptic curves is proven in [22]
is Q(

√
17).

7 Other quadratic fields

It will be observed that we have restricted attention to Q(
√

2) thus far. In
this section, we will make some comments on the situation over other real
quadratic fields. We will now work over a more general field Q(

√
d), and

consider the Frey curve E, given by

y2 = x(x − αp)(x + βp),
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associated to a putative non-trivial point αp + βp = γp on the Fermat curve
of degree p ≥ 5. For the moment, we make three assumptions that we will
check later. We will assume that

1. the curve is semistable;

2. ρ = ρE,p is absolutely irreducible;

3. the curve is modular.

We shall explore these properties later. The curve has discriminant 16(αβγ)2p.
It follows that its minimal discriminant is, apart from primes dividing 2, a
pth power. Results of Edixhoven [7] (see also [5], Proposition 2.12) now imply
that ρ is unramified away from 2 and from p, and that it is finite at primes
dividing p.

We have the following:

Theorem 7.1 Suppose that the Frey curve E satisfies the properties above.

Then there is an adelic Hilbert cusp form g of weight (2, 2) of squarefree level

dividing (2) such that ρg,p
∼= ρ.

Proof. The argument is the same as above. Since E is modular, there is
some Hilbert cuspidal eigenform f such that ρE,p

∼= ρf,p. The level of f is
the same as the conductor of E, which is squarefree since E is semistable.
We may add an auxiliary prime q to the level and switch to a quaternion
algebra ramified at this auxiliary prime and at one infinite place. We may
remove all primes not dividing 2p from the level using Rajaei ([27], Main
Theorem 1) or Jarvis ([19], Theorem 11.3), depending whether the prime
p has N(p) ≡ 1 (mod p) or not (see also [11] for an alternative derivation
of parts of this result). The main result of [21] allows us to remove a prime
dividing the characteristic of the representation, under certain circumstances;
the representation must be finite at the prime (which will be valid), and
also we will require that the ramification be less than p − 1. Since we are
considering quadratic fields in this paper, the ramification degree will satisfy
e ≤ 2 < 4 ≤ p − 1. In addition, there is a mild hypothesis if [F (µp) : F ] = 2
which will never be true in any of the examples we consider at the end of the
argument. We can therefore remove the primes dividing p, to leave ourselves
with a form on the quaternion algebra of level dividing 2. Switching back
to GL2, we find a form of level dividing 2q; the main result of Fujiwara’s
manuscript ([11]) allows us to remove this auxiliary prime. We conclude
that ρ is modular of level dividing 2. Since E is semistable, it has squarefree
conductor; apart from the auxiliary prime which we add (and then take

13



away), we do not increase the level, and so ρ is modular of squarefree level
dividing (2). �

For fields in which (2) is unramified, we will want to show that there are
no forms of weight (2, 2) on Γ0(2). If (2) = p2, we will want to prove the same
result for forms of weight (2, 2) on Γ0(p). For example, if F = Q(

√
3), then

(2) = (
√

3 + 1)2, and so we should try to find an (adelic) Hilbert modular
form of weight (2, 2) on the group Γ0((

√
3 + 1)), and if F = Q(

√
5), we want

an adelic form of weight (2, 2) on the group Γ0(2).
We will begin by listing the fields for which this space is trivial: Hirze-

bruch, van der Ven and Zagier ([16], [17], [18]) prove that the complete list of
fields for which there are no classical Hilbert modular forms (i.e., for which
the genus of the corresponding Hilbert modular surface is zero) are those
Q(

√
d) with d = 2, 3, 5, 6, 7, 13, 15, 17, 21 and 33. A rather tedious

case-by-case study of the cusps and elliptic points gives the following:

Theorem 7.2 Let Γ2 denote the classical subgroup of SL2(OF ) consisting

of matrices

(

a b
c d

)

where c belongs to every prime ideal dividing (2). The

genus of the Hilbert modular surface h2/Γ2 is zero if and only if F = Q(
√

d)
for d = 2, 3, 5 or 7.

However, although the adelic modular forms are closely related to these
classical forms, they only coincide when the narrow class number is 1. Indeed,
it is known that there are elliptic curves with good reduction everywhere over
Q(

√
7), and these should correspond to adelic modular forms of level 1. The

tables at the end of Vignéras ([38]) confirm that there are no adelic modular
forms of the appropriate level for Q(

√
2), Q(

√
3) or Q(

√
5), and these are

the only real quadratic fields with this property.
This immediately implies that these are the only three fields which we

need consider. We can check assumptions (1) and (2) above:

1. The Frey curve can always be made semistable over Q(
√

2), at least
if p ≥ 11; over Q(

√
3) or Q(

√
5), this is not the case, and congruence

conditions are required on α, β and γ to guarantee semistability. For
Q(

√
3), the result is:

Permute α, β and γ to assume that β is divisible by
√

3 + 1
(since the residue field is F2, this can be done). Then if p ≥
11, then the curve is semistable if and only if α is congruent
modulo 4 to 1, 3, 2 +

√
3 or 2 + 3

√
3.

For Q(
√

5), there is a similar conditional result:

14



The Frey curve is semistable if one of α, β and γ is divisible
by 2 (this is not automatic, since the residue field is F4) and
if p ≥ 5.

2. Kraus’s result again implies that if the Frey curve has a semistable
model, then the mod p representation is absolutely irreducible if p ≥ 17,
since both fields have class number 1.

Thus the first two assumptions hold under the given congruence con-
ditions when p ≥ 17.

3. The modularity results, however, tend to require a study of the mod
3 (or sometimes mod 5) representations associated to the curve, and
many of these results require that 3 (or 5) is unramified is the quadratic
field. Modularity results for fields in which 3 or 5 ramifies are likely to
be difficult, and little is known currently. The first author intends to
carry out further work into this problem, in collaboration with Jayanta
Manoharmayum.

We deduce that there is an implication that modularity of semistable ellip-
tic curves over Q(

√
3) and Q(

√
5) implies that Fermat curves of prime degree

at least 17 have no points over Q(
√

3) and Q(
√

5) satisfying certain congru-
ence conditions. We should remark, however, that (as in Serre [30], §4.3),
the existence of modular forms is not necessarily a bar to proving positive
results, and we anticipate that the Ribet-Wiles method could be used fruit-
fully for several other fields (Q(

√
17), for example, where the modularity is

demonstrated in [22]), given suitable computations of the modular forms.
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